Томсон джозеф джон открытия. Нобелевские лауреаты: ​Джозеф Джон Томсон. Лауреат Нобелевской премии

Дж.Дж.Томсон и его вклад в развитие физики
XX века

К 150-летию со дня рождения

Сто пятьдесят лет тому назад в Англии, в семье манчестерского букиниста, родился мальчик, который стал одним из виднейших учёных-физиков конца XIX – начала XX вв. Произошло это 18 декабря 1856 г., и ребёнком этим был Джозеф Джон Томсон . Вклад его в развитие физики впечатляет: экспериментальное открытие в 1897 г. электрона, отмеченное Нобелевской премией по физике (1906 г.); одна из первых моделей атома, в состав которой были включены электроны (1903 г.); первые опытные доказательства существования изотопов (1912 г.), создание крупной научной школы физиков, самым ярким представителем которой является Эрнест Резерфорд, – таков далеко не полный перечень того, что сделал в науке за свою долгую жизнь этот человек. Вот почему в год его юбилея представляется важным не только вспомнить о его научном наследии, но и попытаться оценить значение этого наследия для современности. И есть ещё одна причина. В сознании многих людей – как физиков-профессионалов, так и просто тех, кто интересуется историей науки, – имя этого учёного, которого современники кратко называли «Джи-Джи», с одной стороны, зачастую затмевается именами многих других выдающихся физиков минувшего столетия, а с другой стороны, ему порой ошибочно приписывают научные заслуги его старшего современника – Уильяма Томсона (1824–1907), получившего в 1892 г. за выдающиеся научные заслуги титул лорда Кельвина (отметим, что последний не только предложил абсолютную шкалу температур, но и установил в 1853 г. изучаемую ныне в школе формулу Томсона для периода колебаний в колебательном контуре). Это обстоятельство также является причиной, по которой о Дж.Дж.Томсоне следует поговорить особо.

В юности Томсон хотел стать инженером и даже поступил в один из манчестерских колледжей соответствующего профиля. Но вскоре из-за смерти отца он был вынужден по причине недостатка средств прервать обучение инженерному делу. «Однако, изучив математику, физику и химию, ему в 1876 г. удалось получить стипендию в Тринити*-колледже, и именно с Кембриджским университетом связана вся дальнейшая академическая жизнь Томсона» . (*Слово «Trinity » в переводе с англ. означает «Троица», т.е. Тринити-колледж – это «Колледж св. Троицы».)

Университет Томсон окончил в 1880 г., и к этому времени (началу 90-х гг. XIX в.) относятся его первые научные работы. Они посвящены развитию электродинамики Максвелла. Так, решая задачу о движении заряженного шара, Томсон пришёл к выводу об увеличении кажущейся массы заряда за счёт энергии электростатического поля, и этот вывод получил своё дальнейшее развитие в начале ХХ в. в специальной теории относительности, в частности, в работах А.Пуанкаре. В 1884 г., в возрасте 28 лет, Томсон стал директором Кавендишевской лаборатории, сменив на этом посту Дж.У.Рэлея, и директорство продолжалось до 1918 г. А спустя год, в 1885 г., Томсон защитил диссертацию под названием «О некоторых приложениях принципов динамики к физическим явлениям», которую впоследствии Г.Герц называл «замечательным трактатом»: «Автор развивает здесь следствия динамики, которые наряду с ньютоновскими законами движения имеют в своей основе новые, не выраженные чётко предпосылки. Я мог бы примкнуть к этому трактату; фактически же моё собственное исследование уже значительно продвинулось, прежде чем я познакомился с этим трактатом» , – так писал о диссертации Томсона Герц в последний год своей жизни в предисловии к книге «Принципы механики, изложенные в новой связи» (1894).

Открытие электрона

1. Предыстория. В своей статье «Научная деятельность Вениамина Франклина» (1956) академик П.Л.Капица цитирует фрагмент одного из его писем, датированного 1749 г.: «Электрическая материя состоит из частиц крайне малых, т.к. они могут пронизывать обычные вещества, такие плотные, как металл, с такой лёгкостью и свободой, что не испытывают заметного сопротивления». Комментируя эти слова, П.Л.Капица пишет: «В наши дни мы называем эти „крайне малые частицы” электронами. Далее Франклин рассматривал любое тело как губку, насыщенную этими частицами электричества. Электризация тел состоит в том, что тело, имеющее избыток электрических частиц, положительно заряжено; если тело имеет недостаток этих частиц, оно заряжено отрицательно» .

Таким образом, догадки о существовании частиц, являющихся носителями электрического заряда, высказывались ещё в XVIII в. Первую попытку построения электродинамики, основанной на представлении о зернистом строении «электрического флюида» предпринял в 40-е гг. XIX в. немецкий физик Вильгельм Эдуард Вебер (1804–1891), который считал эти частицы невесомыми и именовал их «электрическими массами», по сути, отождествляя термин «масса» с термином «заряд». В электродинамике Максвелла, разрабатывавшейся им в основном в 60-е гг. XIX в. о подобного рода частицах не упоминается: в ней господствует полевой подход, и электричество трактуется как перемещающаяся в проводниках некая несжимаемая жидкость. Попытку привнести идею дискретности электрических зарядов в электродинамику Максвелла предпринял впервые в 1878 г. Г.Лоренц. Так, в 1892 г. в работе «Электромагнитная теория Максвелла и её приложение к движущимся телам» Лоренц писал: «Достаточно будет допустить, что все весомые тела содержат множество маленьких частиц, заряженных положительно или отрицательно, и что все электрические явления вызываются смещением этих частиц. Согласно этому представлению электрический заряд обусловлен избытком частиц одного определённого знака, электрический ток обусловлен потоком этих частичек, а в весомых изоляторах имеет место „диэлектрическое смещение”, если содержащиеся в них наэлектризованные частицы оказываются удалёнными от своих положений равновесия.

Эти гипотезы не содержат ничего нового в отношении электролитов, и они представляют известную аналогию с идеями относительно металлических проводников, бытовавших в старой теории электричества. От атомов электрической жидкости до заряженных корпускул не так уже далеко» .

Особо следует отметить исследования, касавшиеся особенностей электрических явлений в разреженных газах. В 70-е гг. немецкий физик Эуген Гольдштейн (1850–1930) ввёл в физику понятие катодных лучей и предположил, что по своей природе они аналогичны свету с той лишь разницей, что свет испускается телом вокруг себя по всем направлениям, а катодные лучи испускаются лишь перпендикулярно поверхности катода, но оба процесса по природе относятся к волновым. Опыты Гольдштейна в конце 70-х гг. XIX в. в усовершенствованном виде повторил выдающийся английский физик Уильям Крукс (1832–1919). Введя в газоразрядную трубку радиометр, им же сконструированный ещё в 1873 г., Крукс обнаружил его вращение под действием катодных лучей, из чего сделал вывод, что эти лучи переносят энергию и импульс. Поместив в трубку на пути катодных лучей металлический крест, Крукс обнаружил его тень на флуоресцирующем стекле трубки и пришёл к заключению, что катодные лучи распространяются прямолинейно. Он же опытным путём убедился в том, что эти лучи можно отклонять в ту или в другую сторону магнитом. Лучи он именовал неким четвёртым или ультрагазообразным состоянием вещества, либо лучистой материей , имеющей, однако, корпускулярную природу, трактуемую в космическом масштабе: «При изучении этого четвёртого состояния вещества создаётся представление, что мы имеем наконец в своём распоряжении „окончательные” частицы, которые мы можем с полным основанием считать лежащими в основе физики Вселенной» .

Корпускулярной концепции природы катодных лучей противостояла уже упоминавшаяся волновая концепция. Крукс полагал, что катодные лучи есть молекулы остаточного газа, содержащегося в газоразрядной трубке; соприкоснувшись с катодом, они получают от него отрицательный заряд и отталкиваются от катода. Но тогда они должны отклоняться электрическим полем. Опыты же, которые проводил Г.Герц, показали, что электрическим полем они не отклоняются. В 1892 г. Герц опытным путём убедился в том, что катодные лучи могут проходить сквозь тонкие алюминиевые пластинки. Но если это так, то непонятно, каким образом наэлектризованные молекулы могут проходить сквозь металл. С другой стороны, магнитное поле на световые волны не действует, а опыты Крукса показывали, что данное поле действует на катодные лучи. Таким образом, в начале 90-х гг. XIX в. возникла проблема, которая нуждалась в разрешении. Что есть катодные лучи – волны или частицы?

2. Ж.Перрен и Дж.Томсон – решение проблемы природы катодных лучей . На рис. 1 показана схема опыта, который осуществил в 1895 г. Жан Батист Перрен (1870–1942). Внутри разрядной трубки перед катодом N на расстоянии 10 см помещался соединённый с электроскопом металлический цилиндр ABCD (закрытый кожухом EFGH ) с небольшим отверстием напротив катода. При работе трубки в цилиндр проникал пучок катодных лучей, при этом цилиндр всегда получал отрицательный заряд. Если с помощью магнита отклоняли катодные лучи так, чтобы они не попадали внутрь цилиндра, электроскоп не давал никаких показаний. Уже отсюда можно было заключить, что катодные лучи несут отрицательные электрические заряды, а стало быть речь идёт о потоке частиц.

Однако сторонники волновой концепции выдвигали следующее возражение. Допуская, что катод может излучать заряженные частицы, они отрицали, что именно эти частицы являются катодными лучами. При попадании катодных лучей на стенку трубки последняя начинала светиться, но свечение и выброс катодом частицы, по их мнению, могли быть двумя разными явлениями, подобно тому как разными явлениями являются вылет из ствола орудия артиллерийского снаряда и сопровождающая это процесс вспышка.

Требовалось экспериментально доказать, что выброс катодом заряженных частиц и свечение стенки разрядной трубки взаимосвязаны, что речь идёт не о разных физических явлениях, а об одном. Эти доказательства и были представлены Дж.Дж.Томсоном в его опытах 1897 г., являвшихся вариантами опытов Перрена. Цилиндр с отверстием располагался не перед катодом, а сбоку от него, для чего была изменена геометрия самой трубки, рис. 2. В этом случае изначально наблюдалась флуоресценция стеклянной стенки трубки, но она исчезала, когда катодные лучи отклоняли магнитом и «уводили» в отверстие цилиндра, связанного с электроскопом, который регистрировал отрицательный заряд. Так было доказано, что свечение стенки трубки и зарядку цилиндра вызывают одни и те же частицы. А кроме того, Томсон в своих опытах сумел сделать то, что не удалось сделать Герцу: он сумел добиться отклонения катодных лучей электрическим полем (в опытах Герца всё портила проводимость остаточного газа в трубке, возникавшая под действием катодных лучей).

Итак, катодные лучи есть частицы. Какие? Каковы их свойства, их особенности? На эти вопросы Томсон отвечал, описывая их движение законами механики. Например, в электростатическом поле они должны вести себя так же, как ведут себя падающие тела вблизи поверхности Земли. Если, например, положительно заряженная частица оказывается в пространстве между двумя горизонтальными пластинами, верхняя из которых заряжена положительно, а нижняя отрицательно, то эта частица будет отталкиваться от верхней пластины и притягиваться к нижней, т.е. двигаться с ускорением вниз. Если эта частица влетает в пространство между этими пластинами со скоростью, направленной параллельно плоскостям пластин, то она будет приближаться к нижней пластине по параболической траектории, т.е. двигаться так же, как падает на поверхность Земли камень, брошенный со скоростью, направленной параллельно земной поверхности. Если же в пространстве между пластинами существует ещё и магнитное поле, направленное либо за чертёж, либо из чертежа то, во-первых, на исследуемую заряженную частицу будет действовать сила Лоренца (магнитная сила), и по её направлению можно судить о знаке заряда, а во-вторых, электрическая и магнитная силы могут компенсировать друг друга, если окажутся направленными в противоположные стороны. Электрическая сила вычисляется как произведение заряда частицы на напряжённость электрического поля; магнитная сила вычисляется как произведение этого заряда на скорость частицы и на индукцию магнитного поля (пусть угол между векторами скорости и индукции составляет 90°). Тогда получаем eE = e B , т.е. E = B . Отсюда сразу видно, что скорость движения заряженной частицы вычисляется, как отношение напряжённости электрического поля E к индукции магнитного поля B . Однако известно, что сила Лоренца сообщает заряженной частице центростремительное ускорение 2 /r ; тогда и можно найти значение удельного заряда частицы, т.е. отношение заряда к массе частицы:

Из этого результата видно следующее. Удельный заряд исследуемой частицы зависит от индукции магнитного поля и от напряжённости электрического поля (т.е. от разности потенциалов между пластинами). Удельный заряд частицы не зависит от химических свойств остаточного газа в трубке, от геометрической формы трубки, от материала, из которого изготовлены электроды, от скорости катодных лучей (в опытах Томсона 1897 г. эта скорость составляла 0,1с , где с – скорость света в вакууме) и ни от каких иных физических параметров. Катодные лучи не являются ионами остаточного газа, вылетающими с катода, как полагал Крукс, но всё же это частицы. И если их удельный заряд – константа, то речь идёт об одинаковых частицах. Выразив массу этих частиц в граммах, а заряд в СГСМ, как это было принято в те времена, Томсон получил удельный заряд частиц равным 1,7 10 7 ед. СГСМ/г. О высокой точности его эксперимента говорит то, что современное значение удельного заряда электрона равно (1,76 ± 0,002)10 7 ед. СГСМ/г.

Исходя из полученного значения удельного заряда можно было попытаться оценить массу частиц. Ко времени проведения опытов уже было известно значение удельного заряда иона водорода (10 4 ед. СГСМ/г). Термин «электрон» к тому времени также существовал, его ввёл в обиход в 1891 г. ирландский физик и математик Джордж Стоней (1826–1911) для обозначения электрического заряда одновалентного иона при электролизе, а после исследований Томсона этот термин был перенесён на открытые им частицы. И если предположить, что заряд и масса электрона так или иначе связаны с соответствующими значениями для иона водорода, то были возможны два варианта:

а ) масса электрона равна массе иона водорода, – тогда заряд электрона должен быть больше, чем заряд иона водорода, в 10 3 раз. Однако исследования немецкого физика Филиппа Ленарда показали нереальность подобного предположения. Им было установлено, что средний свободный пробег частиц, образующих катодные лучи, составляет в воздухе 0,5 см, в то время как для иона водорода он меньше, чем 10 –5 см. Значит, масса вновь открытых частиц должна быть малой;

б ) заряд частицы равен заряду иона водорода, но в таком случае масса данной частицы должна быть меньше массы иона водорода в 10 3 раз. На этом варианте остановился Томсон.

Всё же было бы лучше каким-то образом напрямую измерить либо заряд электрона, либо его массу. Решению проблемы помогло следующее обстоятельство. В том же 1897 г., когда Томсон ставил свои опыты по изучению катодных лучей, его ученик Чарльз Вильсон установил, что в воздухе, пересыщенном водяными парами, каждый ион становится центром конденсации пара: ион притягивает к себе капельки пара, и начинается образование капельки воды, которая растёт до тех пор, пока не станет видимой. (В дальнейшем, в 1911 г., сам Вильсон использовал это открытие, создав свой знаменитый прибор – камеру Вильсона). Томсон воспользовался открытием своего ученика так. Допустим, что в ионизированном газе есть некоторое количество ионов, имеющих одинаковый заряд, и эти ионы движутся с известной скоростью . Быстрое расширение газа приводит к его перенасыщению, и каждый ион становится центром конденсации. Сила тока равна произведению числа ионов на заряд каждого иона и на его скорость . Сила тока может быть измерена, скорость движения ионов тоже, и если как-то определить число частиц, то можно найти и заряд одной частицы. Для этого, во-первых, измерялась масса сконденсировавшегося водяного пара, а во-вторых, масса одиночной капельки. Последняя находилась следующим образом. Рассматривалось падение капелек в воздухе. Скорость этого падения под действием силы тяжести равна, по формуле Стокса,

– коэффициент вязкости среды, в которой падает капля, т.е. воздуха. Зная эту скорость, можно найти радиус капельки r и её объём, полагая капельку сферической. Умножив этот объём на плотность воды, находим массу одной капельки. Разделив общую массу сконденсированной жидкости на массу одной капельки, найдём их число, которое равно числу ионов газа, через которое находится заряд одного иона. Как среднее большого числа измерений Томсон получил для искомого заряда значение 6,5 10 –10 ед. СГСМ, что вполне удовлетворительно согласовывалось с уже известным в то время зарядом иона водорода.

Метод, о котором говорилось выше, был усовершенствован Вильсоном в 1899 г. Над отрицательно заряженной капелькой располагалась положительно заряженная пластина, которая своим притяжением уравновешивала действующую на каплю силу тяжести. Из этого условия можно было найти заряд ядра конденсации. Уместен вопрос: является ли в действительности заряд капли зарядом электрона? Разве это не заряд ионизованных молекул, который отнюдь не обязан быть априори равен заряду электрона? Томсон показал, что заряд ионизованной молекулы действительно равен заряду электрона, появляется независимо от способа ионизации вещества и всегда оказывается равным заряду одновалентного иона при электролизе. Подставив же значение этого заряда в выражение для удельного заряда электрона, можно найти массу последнего. Эта масса оказывается меньше массы иона водорода примерно в 1800 раз. В настоящее время приняты следующие значения фундаментальных постоянных: заряд электрона равен 1,601 10 –19 Кл; масса электрона 9,08 10 –28 г, что меньше массы атома водорода примерно в 1840 раз.

В связи с исследованиями Томсоном свойств и природы катодных лучей хотелось бы также упомянуть о его вкладе в исследование природы фотоэффекта. В механизме этого явления в то время ясности не было – ни в работах А.Г.Столетова (умершего в мае 1896 г., т.е. до открытия электрона), ни в работах европейских физиков – итальянца А.Риги, немца В.Гальвакса, – а тем более в исследованиях Г.Герца, который умер ещё в 1894 г. Томсон в 1899 г., исследуя фотоэффект по экспериментальной методике, схожей с методикой исследования свойств катодных лучей, установил следующее. Если полагать, что электрический ток, возникающий при фотоэффекте, есть поток отрицательно заряженных частиц, то можно теоретически рассчитать движение частицы, образующей этот ток, одновременно действуя на неё электрическим и магнитным полями. Эксперименты Томсона подтвердили: ток между двумя противоположно заряженными пластинами при освещении катода ультрафиолетовыми лучами есть поток отрицательно заряженных частиц. Измерения заряда этих частиц, проведённые по той же методике, по которой ранее Томсон измерял заряд ионов, дали среднее значение заряда, по порядку величины близкое к значению заряда частиц, образующих катодные лучи. Отсюда Томсон заключил, что в обоих случаях следует говорить о частицах одной и той же природы, т.е. об электронах.

Атом Томсона. Проблема «увязки» открытых электронов со строением вещества была поставлена Томсоном уже в его работе по определению удельного заряда электронов. Первая модель атома, предложенная Томсоном, базировалась на опытах А.Майера (США) с плавающими магнитами, которые проводились ещё в конце 70-х гг. XIX в. Эти опыты заключались в следующем. В сосуде с водой плавали пробки, в которые были вставлены слегка выглядывавшие из них намагниченные иглы. Полярность видневшихся концов игл была на всех пробках одной и той же. Над этими пробками на высоте около 60 см располагался противоположным полюсом цилиндрический магнит, и иглы притягивались к магниту, одновременно отталкиваясь друг от друга. в итоге эти пробки самопроизвольно образовывали различные равновесные геометрические конфигурации. Если пробок было 3 или 4, то они располагались в вершинах правильного многоугольника. Если их было 6, то 5 пробок плавали в вершинах многоугольника, а шестая оказывалась в центре. Если же их было, к примеру, 29, то одна пробка опять-таки находилась в центре фигуры, а остальные располагались вокруг неё кольцами: в ближнем к центру кольце плавали 6, в следующих кольцах по мере удаления от центра соответственно 10 и 12. Эту механическую конструкцию Томсон перенёс на строение атома, видя в ней возможность объяснения закономерностей, заложенных в Периодической системе Д.И.Менделеева (имеется в виду послойное распределение электронов в атоме). Однако в данном случае оставался открытым вопрос о конкретном числе электронов в атоме. И если предположить, что электронов, например, несколько сотен (особенно с учётом того, что масса электрона ничтожна по сравнению с массой иона водорода), то изучение поведения электронов в такой конструкции практически невозможно. Поэтому уже в 1899 г. Томсон видоизменил свою модель, предположив, что нейтральный атом содержит большое число электронов, отрицательный заряд которых компенсируется «чем-то, что делает пространство, в котором рассеяны электроны, способным действовать так, как если бы оно имело положительный электрический заряд, равный сумме отрицательных зарядов электронов» .

Спустя несколько лет в журнале «Philosophical Magazine » (№ 2, 1902 г.) появилась работа другого Томсона – Уильяма, известного как лорд Кельвин, – в которой рассматривалось взаимодействие электрона с атомом. Кельвин утверждал, что внешний электрон притягивается к атому с силой, обратно пропорциональной квадрату расстояния от центра электрона до центра атома; электрон же, входящий в состав атома, притягивается к последнему с силой, прямо пропорциональной расстоянию от центра электрона до центра атома. Отсюда видно, в частности, что Кельвин рассматривает электроны не только как самостоятельные частицы, но и как составную часть атома. Этот вывод «равносилен допущению о равномерном распределении положительного электричества в пространстве, занимаемом атомом обычной материи. Из этого следовало, что существует два рода электричества: отрицательное, зерновидное, и положительное, в виде непрерывного облака, как обычно представляли себе „флюиды” и, в частности, эфир» . В целом можно сказать, что, по Кельвину, в атоме наличествуют равномерное сферическое распределение положительного электрического заряда и определённое количество электронов. Если речь идёт об одноэлектронном атоме, то электрон должен находиться в центре атома, будучи окружённым облаком положительного заряда. Если же в атоме находятся два или больше электронов, то встаёт вопрос об устойчивости такого атома. Кельвин высказал допущение, что, по-видимому, электроны вращаются вокруг центра атома, будучи расположенными на сферических поверхностях, концентричных границе атома, и эти поверхности также находятся внутри атома. Но в этом случае возникают проблемы: при движении заряженной частицы должно возникнуть магнитное поле, а при движении с ускорением (а вращающийся электрон неизбежно имеет центростремительное ускорение) должно иметь место электромагнитное излучение. Исследованием этих вопросов и занимался Томсон, оставаясь в течение примерно пятнадцати лет сторонником идей Кельвина.

Уже в 1903 г. Томсон установил, что вращающиеся электроны должны порождать эллиптически поляризованные световые волны. Что же касается магнитного поля вращающихся зарядов, то, как показывает теория, при вращении электронов под действием силы, пропорциональной расстоянию от заряда до центра вращения, объяснить магнитные свойства вещества можно лишь при условии рассеяния энергии. На вопрос о том, существует ли реально такое рассеяние, Томсон внятного ответа не дал (по-видимому, понимая, что наличие такого рассеяния породит проблему устойчивости конструкции атома).

В 1904 г. Томсон рассмотрел проблему механической устойчивости атомной структуры. Несмотря на то, что ныне такой подход воспринимается как анахронизм (поведение частиц, образующих атом, следует рассматривать с позиций не классической, а квантовой механики, о которой в те времена не было известно решительно ничего), на результатах, полученных Томсоном, всё же имеет смысл остановиться.

Во-первых, Томсон установил, что электроны в атоме должны быстро вращаться и скорость этого вращения не может быть меньше некоторой предельной. Во-вторых, если число электронов в атоме больше восьми, то электроны должны располагаться несколькими кольцами, и число электронов в каждом кольце должно расти с ростом радиуса кольца. В-третьих, для радиоактивных атомов скорость электронов вследствие радиоактивного излучения должна постепенно убывать, и на некотором пределе убывания должны происходить «взрывы», приводящие к образованию новой атомной структуры.

Ныне общепризнана появившаяся в 1910 г. планетарная модель Резерфорда, впоследствии усовершенствованная с квантовых позиций Н.Бором. Тем не менее модель Томсона ценна в плане постановки: 1) проблемы связи числа электронов и их распределения с массой атома; 2) проблемы природы и распределения в атоме положительного заряда, компенсирующего общий отрицательный электронный заряд; 3) проблемы распределения массы атома. Эти проблемы решались в процессе последующего развития физики ХХ в., и их решение в итоге привело к современным представлениям о строении атома.

Экспериментальное доказательство существования изотопов. Сама мысль о том, что атомы одного и того же химического элемента могут иметь разные атомные массы, возникла задолго до того, как Томсон начал заниматься «изотопной проблемой». Эту мысль в XIX в. высказывал основоположник органической химии А.М.Бутлеров (1882) и несколько позже У.Крукс (1886). Первые радиоактивные изотопы получил в 1906 г. американский химик и одновременно физик Б.Болтвуд (1870–1927) – два изотопа тория с разными периодами полураспада. Сам термин «изотоп» несколько позже ввёл Ф.Содди (1877–1956) после того, как им были сформулированы правила смещения для радиоактивного распада. Что же касается Томсона, то он в 1912 г. экспериментально изучал свойства и особенности так называемых каналовых лучей , и о том, что это такое, следует сказать несколько слов.

Речь идёт о потоке положительных ионов, движущихся в разреженном газе под действием электрического поля. При соударении электронов с газовыми молекулами у катода в области тлеющего разряда и катодного падения потенциала молекулы расщепляются на электроны и положительные ионы. Эти ионы, разгоняясь электрическим полем, приходят к катоду с большой скоростью. Если в катоде имеются отверстия по направлению движения ионов, либо если сам катод имеет форму сетки, то часть ионов, пройдя по этим каналам, окажется в закатодном пространстве. Изучением поведения таких ионов начал заниматься ещё в 80-е гг. XIX в. ранее упоминавшийся Э.Гольдштейн. Томсон же в 1912 г. изучал воздействие на каналовые лучи (конкретно для ионов неона) одновременно электрического и магнитного полей по той методике, о которой уже говорилось (имеется в виду томсоновский «метод парабол»). Пучок ионов неона в его опытах разделялся на два параболических потока: яркий, соответствовавший атомной массе 20 и более слабый, соответствовавший атомной массе 22. Из этого Томсон сделал вывод о том, что содержащийся в атмосфере Земли неон является смесью двух разных газов. Ф.Содди оценил результаты исследований Томсона следующим образом: «Это открытие представляет собой самое неожиданное приложение того, что было найдено для одного конца Периодической системы, к элементу другого конца системы; оно подтверждает предположение о том, что структура материи вообще существенно сложнее, чем это проявляется в одном лишь периодическом законе» . Результат имел огромное значение не только для атомной физики, но и для последующего развития физики экспериментальной, ибо указывал способы измерения масс различных изотопов.

В 1919 г. ученик и ассистент Томсона Фрэнсис Уильям Астон (1877–1945) построил первый масс-спектрограф, с помощью которого опытным путём доказал наличие изотопов у хлора и ртути. В масс-спектрографе применяется именно томсоновский метод отклонения заряженных частиц под действием двух полей, электрического и магнитного, однако в приборе Астона применялось фотографирование разделённых потоков ионов с разными атомными массами, а кроме того, использовалось отклонение заряженной частицы в электрическом и магнитном полях – в одной и той же плоскости, но в противоположных направлениях. Физика же работы масс-спектрографа в главном состоит в следующем. «Ионы исследуемого вещества, проходя вначале электрическое, а затем магнитное поле, попадают на фотопластинку и оставляют на ней след. Отклонение ионов зависит от отношения e /m , одинакового для всех ионов (или, лучше сказать, от ne /m , потому что ион может нести более одного элементарного заряда). Поэтому все ионы одинаковой массы концентрируются в одной и той же точке фотопластинки, а ионы другой массы – в других точках, так что по точке попадания иона на пластинку можно определить его массу» .

В заключение – несколько слов о созданной Томсоном научной школе. Его учениками являются такие крупнейшие физики ХХ в., как П.Ланжевен, Э.Резерфорд, Ф.Астон, Ч.Вильсон. Трое последних в разные годы, как и сам Томсон, были отмечены Нобелевскими премиями по физике. Особо отметим его сына. Отец-Томсон экспериментально доказал сам факт существования электрона, а сын, Джордж Паджет Томсон был удостоен в 1937 г. Нобелевской премии за экспериментальное доказательство волновой природы электронов (1927; в том же году независимо от Томсона-младшего аналогичные исследования провёл К.Дэвиссон совместно со своим сотрудником Л.Джермером. Оба были физиками из США; Дэвиссон был также удостоен Нобелевской премии). Вот как оценивал эти исследования в 1928 г. Эрвин Шрёдингер: «Некоторые исследователи (Дэвиссон и Джермер и молодой Дж.П.Томсон) приступили к выполнению опыта, за который ещё несколько лет назад их бы поместили в психиатрическую больницу для наблюдения за их душевным состоянием. Но они добились полного успеха» .

После 1912 г., отмеченного экспериментальным доказательством существования изотопов, Томсон прожил ещё двадцать восемь лет. В 1918 г. он покинул пост директора Кавендишевской лаборатории (его место занял Резерфорд) и далее до конца своих дней возглавлял тот самый Тринити-колледж, откуда начинался когда-то его путь в науку. Умер Джозеф Джон Томсон на 84-м году жизни 30 августа 1940 г. и был похоронен в Вест-минстерском аббатстве – там же, где обрели вечный покой Исаак Ньютон, Эрнест Резерфорд, а из деятелей английской литературы – Чарльз Диккенс.

Литература

1. Жизнь науки. Под ред. Капицы С.П. – М.: Наука, 1973.

2. Капица П.Л. Эксперимент. Теория. Практика. – М.: Наука, 1981.

3. Дорфман Я.Г. Всемирная история физики с начала XIX до середины XX вв. – М.: Наука, 1979.

4. Льоцци М. История физики. – М.: Мир, 1970.

, Лауреат Нобелевской премии

Джозеф Джон Томсон (1856-1940) - английский физик, основатель научной школы, член (1884) и президент (1915-1920) Лондонского Королевского общества, иностранный член-корреспондент Петербургской АН (1913) и иностранный почетный член (1925) АН СССР. Директор Кавендишской лаборатории (1884-1919). Исследовал прохождение электрического тока через разреженные газы. Открыл (1897) электрон и определил (1898) его заряд. Предложил (1903) одну из первых моделей атома. Автор исследований электрических токов в разреженных газах и катодных лучей, объяснивший непрерывность спектра рентгеновских лучей, выдвинувший идею о существовании изотопов и получивший ее экспериментальное подтверждение. Один из создателей электронной теории металлов. Нобелевская премия (1906).

Джозеф Томсон родился 18 декабря 1856, Чэтем Хилл, пригород Манчестера. Скончался 30 августа 1940, в Кембридже; похоронен в Вестминстерском аббатстве.

Математик приходит в физику

Джозеф Томсон родился в семье продавца книг. Отец хотел, чтобы он стал инженером, и когда Джозеф достиг четырнадцати лет, его отдали учиться в колледж Оуэна (впоследствии Манчестерский университет).

Цивилизованное общество напоминает ребенка, который ко дню своего рождения получил слишком много игрушек.

Томсон Джозеф Джон

До середины 19 века в университетах не существовало исследовательских лабораторий и профессора, проводившие опыты, делали это у себя дома. Первая физическая лаборатория была открыта в Кембридже в 1874 г. Ее возглавил Джеймс Клерк Максвелл, а после его ранней кончины - лорд Рэлей, вышедший в отставку в 1884. И тогда неожиданно для многих Томсон, двадцативосьмилетний математик, только начинавший экспериментальные исследования, был избран кавендишевским профессором и директором лаборатории. Будущее показало, что этот выбор оказался весьма удачным.

Начало экспериментов Джозефа Томсона

Внимание многих физиков в то время привлекали проблемы электричества и магнетизма. Уже появились (хотя еще не вошли во всеобщее употребление) уравнения Максвелла. Однако, Томсон обратился не к той части электродинамики, которая рассматривает напряженности полей, порождаемых «заданными» источниками (т. е. плотности зарядов и токов которых известны), а именно вопросом о физической природе самих этих источников. В теории самого Максвелла этот вопрос почти не обсуждался. Для него электрический ток - все, что порождает магнитное поле (не меняющиеся со временем распределения электрических зарядов создают только электрические поля).

Томсона увлек вопрос о носителях зарядов. Он начал с исследования токов в разреженных газах, чем занимались тогда и в ряде других лабораторий. Томсон обнаружил, что проводимость газов увеличивается под воздействием рентгеновских лучей. Важные результаты были получены им при исследовании катодных лучей. т.е. потоков, исходящих из катодов (отрицательных электродов) разрядных трубок. Об их физической природе высказывались тогда различные мнения. Большинство немецких физиков полагало, что это - волны, подобные рентгеновским лучам, тогда как английские видели в них поток частиц.

В 1894 Томсону удалось измерить их скорость, которая оказалась в 2000 раз меньше световой, что явилось убедительным доводом в пользу корпускулярной гипотезы. Через год французского экспериментатор Жан Перрен выяснил знак электрического заряда катодных лучей: попадая на металлический цилиндр, они заряжали его отрицательно. Оставалось определить массу частиц. Эту проблему также с блеском смог разрешить Томсон. Но, прежде чем начать эксперимент, он обратился к теории и рассчитал, как должна двигаться заряженная частица в скрещенных электрическом и магнитном полях. Отклонение такой частицы получалось зависящим от отношения ее заряда к массе.

Начался эксперимент (нужно заметить, что Джозеф Томсон чаще всего, тщательно, во всех деталях продумав эксперимент, предоставлял его проведение помощникам). Его результаты показали, что масса частиц почти в 2000 раз меньше. чем у самых легких ионов - ионов водорода. Что же касается заряда, то у ионов он уже был надежно вычислен на базе опытов по электролизу и оказался положительным. Поскольку атом водорода имеет нулевой заряд, это наводило на мысль, что существуют равные по величине и противоположные по знаку носители дискретных порций электрических зарядов. Те частицы, которые входили в состав катодных лучей, были вскоре названы электронами. Их открытие было одним из важнейших достижений физики конца 19 века, и оно непосредственно связано с именем Томсона, удостоенного за него в 1906 Нобелевской премии.

Модель атома

В том же 1897, когда было зарегистрировано открытие электрона, Д. Томсон обратился к проблеме атома. Придя к убеждению, что, вопреки своему названию, атом не является неделимым, Томсон предложил модель его устройства. По этой модели атом выступал в виде положительно заряженной «капли», внутри которой «плавали» маленькие отрицательно заряженные шарики - электроны. Под действием кулоновских сил они располагались вблизи центра атома в виде цепочек определенных конфигураций (в которых можно было даже усмотреть нечто напоминающее упорядоченность в периодической таблице Менделеева). Если какой-то толчок отклонял электроны от положений равновесия, начинались колебания (связь со спектрами!) и кулоновские силы стремились восстановить исходное равновесие. Хотя опыты, проведенные впоследствии в той же кавендишевской лаборатории преемником Томсона, Эрнестом Резерфордом заставили отказаться от этой модели, она сыграла немалую роль в формировании представлений о строении материи.

От электронов к ядрам

Начав работу в кавендишевской лаборатории с исследования рассеяния рентгеновских лучей, Джозеф Томсон пришел к формуле, носящей его имя и описывающей рассеяние электромагнитных волн на свободных электронах. Эта формула и поныне играет видную роль в физике элементарных частиц.

Важна была также роль Томсона в открытии фотоэффекта и термоэлектронной эмиссии. Очень плодотворной оказалась и идея использования скрещенных полей для измерения отношений зарядов частиц к их массам. На этой идее основана работа масс-спектрографов, которые нашли широкое применение в физике ядра и, в частности, сыграли существенную роль для открытия изотопов (ядер, имеющих различные массы, но одинаковые заряды, чем определяется их химическая неразличимость). Отметим, что предсказание существования изотопов и экспериментальное обнаружение некоторых из них также было сделано Томсоном.

Джозеф Томсон был одним из ярчайших физиков-классиков. Правда, он застал появление квантовой теории (становление которой происходило в значительной степени на его глазах и при непосредственном участии его молодых коллег), появление теории относительности и атомной и ядерной физики. Более того, его личное участие в том грандиозном пересмотре всего физического миропонимания, которое принесли первые десятилетия нового века, было несомненным и глубоким. Но он до конца дней сохранял веру в существование механического эфира, несмотря на успехи релятивистской теории, которую он воспринимал лишь как отражение некоторых математических свойств уравнений Максвелла. По отношению к квантовой теории он довольно долго оставался в положении скептического наблюдателя и изменил мнение о ней лишь после того, как его сын Джордж Паджет Томсон на опыте обнаружил волновые свойства у электронов (за что был удостоен в 1937 Нобелевской премии).


Джозеф Томсон
(1856-1940).

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: "Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе".

Джозеф Джон Томсон родился 18 декабря 1856 года в Манчестере. Здесь, в Манчестере, он окончил Оуэнс-колледж, а в 1876-1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась "Об электрических и магнитных эффектах, производимых движением наэлектризованных тел". В этой статье выражена та мысль, что "эфир вне заряженного тела является носителем всей массы, импульса и энергии". С увеличением скорости изменяется характер поля, в силу чего вся эта "полевая" масса возрастает, оставаясь все время пропорциональной энергии.

Томсон был одержим экспериментальной физикой в лучшем смысле этого слова. Неутомимый в работе, он настолько привык самостоятельно добиваться поставленной цели, что злые языки поговаривали о его полном пренебрежении к авторитетам. Уверяли, что он предпочитал самостоятельно продумывать любые незнакомые ему вопросы научного характера, вместо того чтобы обратиться к книгам и готовым теориям. Впрочем, это явное преувеличение…

Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.

Известно, что, когда один из американских физиков, стажировавшихся в Кавендишской лаборатории, узнал об этом назначении, он тут же собрал свои пожитки. "Бессмысленно работать под началом профессора, который всего на два года старше тебя…" - заявил он, отплывая на родину. Что ж, у него впереди было много времени, чтобы пожалеть о своей поспешности.

Для такого выбора у старого директора лаборатории были немалые основания. Все, кто близко знал Томсона, единодушно отмечали его неизменную благожелательность и приятную манеру общения, сочетавшуюся с принципиальностью. Позже ученики вспоминали, что их руководитель любил повторять слова Максвелла о том, что никогда не следует отговаривать человека поставить задуманный им эксперимент. Даже если он не найдет того, что ищет, он может открыть нечто иное и вынести для себя больше пользы, чем из тысячи дискуссий.

Так уживались в этом человеке столь разные свойства, как самостоятельность собственных суждений и глубокое уважение к мнению ученика, сотрудника или коллеги. И может быть, именно эти качества обеспечили ему успех в должности руководителя "Кавендиша".

На новый пост Томсон пришел, имея опубликованные работы, убеждение в единстве материального мира и множество планов на будущее. И его первые успехи способствовали авторитету Кавендишской лаборатории. Скоро здесь собралась группа молодых людей, приехавших из самых разных стран. Все они одинаково горели энтузиазмом и готовы были на любые жертвы ради науки. Образовалась школа, настоящий научный коллектив людей, объединенных общностью целей и методов, с мировым авторитетом во главе.

С 1884 по 1919 год, когда его сменил на посту директора лаборатории Резерфорд, Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские ученые.

Завершая в конце жизни книгу своих воспоминаний, Томсон перечисляет среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в тринадцати странах. Результат поистине блестящий.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей…

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо. В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной, то есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей, но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…

При одной мысли об этом исследователю прошлого века должно было становиться не по себе. Ведь само слово "атом" означало "неделимый". Тысячелетиями, прошедшими со времени Демокрита, атомы являлись символами предела делимости, символами дискретности вещества. И вдруг… Вдруг оказывается, что и у них есть составные части?

Согласитесь, что тут было от чего почувствовать растерянность. Правда, к ужасу святотатства примешивался в немалой степени и восторг от предвкушения великого открытия…

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют.

Тонкий почерк ученого покрывает листы бумаги бесконечными цифрами. И вот они, первые результаты расчетов: сомнений нет, неизвестные частицы - не что иное, как мельчайшие электрические заряды, неделимые атомы электричества, или электроны. Они были известны теоретически и даже получили название, но только ему удалось открыть и тем самым окончательно подтвердить их существование экспериментально.

И это сделал он - упрямый английский физик-экспериментатор профессор Джозеф Джон Томсон, которого ученики и коллеги за глаза звали просто Джи-Джи.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, назначен его доклад. Большинство собравшихся хорошо знакомы с историей вопроса. Многие сами пытались решить проблемы природы катодных лучей. Имя докладчика обещало интересное сообщение.

И вот Томсон на трибуне. Он высокого роста, худощавый, в очках с металлической оправой. Говорит уверенно, громко. Ассистенты докладчика тут же, на глазах у присутствующих, готовят демонстрационный опыт. Действительно, все, о чем говорил высокий джентльмен в очках, имело место. Катодные лучи в трубке послушно отклонялись и притягивались магнитным и электрическим полями. Причем отклонялись и притягивались именно так, как должны были, если предположить, что они состояли из мельчайших отрицательно заряженных частиц…

Слушатели были в восторге. Они не раз прерывали доклад аплодисментами. Финал же превзошел все ожидания. Такого триумфа этот старинный зал, пожалуй, еще не видел. Почтенные члены Королевского общества вскакивали с мест, спешили к демонстрационному столу, толпились, размахивая руками, и кричали…

Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул - электронов.

Название "электрон", некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда, стало именем неделимого "атома электричества".

Теперь стали видны и дальнейшие самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона, что позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций… Да что говорить, знание точного значения заряда электрона было необходимо как воздух, и потому за опыты по его определению тут же взялись многие физики.

В 1904 году Томсон обнародовал свою новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы. В каждом кольце корпускулы совершали довольно сложные движения, которые автор гипотезы связывал со спектрами. А распределение корпускул по кольцам-оболочкам соответствовало вертикальным столбцам таблицы Менделеева.

Рассказывают, что однажды журналисты попросили Джи-Джи пояснить наглядно, каким он предполагает строение "своего атома".

О, это очень просто, - невозмутимо ответил профессор, - скорее всего, это нечто вроде пудинга с изюмом…

Так и вошел в историю науки атом Томсона - положительно заряженным "пудингом", нафаршированным отрицательными "изюминками" - электронами.

Томсон и сам прекрасно понимал сложность структуры "пудинга с изюмом". Ученый подошел совсем близко и к выводу, что характер распределения электронов в атоме определяет его место в периодической системе элементов, но только подошел. Окончательный вывод был еще впереди. Многое в предложенной им модели было еще необъяснимо. Никто, например, не понимал, что представляет собой положительно заряженная масса атома и сколько электронов должно содержаться в атомах различных элементов.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц. В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография "Лучи положительного электричества" положила начало масс-спектроскопии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 году.

Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Томсон до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления. Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом.

Умер Томсон 30 августа 1940 года, в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.

ТОМСОН, ДЖОЗЕФ ДЖОН (Thomson, Joseph John) (1856–1940), английский физик, удостоенный в 1906 Нобелевской премии по физике за работы, которые привели к открытию электрона. Родился 18 декабря 1856 в пригороде Манчестера – Читем-Хилле. Поступил в Оуэнс-колледж (впоследствии Манчестерский университет), продолжил образование в Тринити-колледже Кембриджского университета. С 1918 и до конца жизни – ректор Тринити-колледжа. В 1884–1919 Томсон – профессор Кембриджского университета и одновременно руководитель Кавендишской лаборатории; в 1905–1918 – профессор Королевской ассоциации в Лондоне.

Наибольшую известность Томсону принесли его работы, связанные с открытием электрона: в 1897, исследуя отклонение катодных лучей в магнитном и электрическом полях, Томсон обнаружил, что они представляют собой поток отрицательно заряженных частиц. Измерил отношение заряда частиц к массе и показал, что они в 1837 раз легче атома водорода. В 1899 обнаружил электроны в фототоке, наблюдал эффект термоэлектронной эмиссии. Изучал особенности электрического разряда в газах, дал объяснение непрерывного спектра рентгеновского излучения.

Томсон – один из основоположников электронной теории металлов (1900). Им получено выражение для эффективного сечения рассеяния электромагнитных волн свободными электронами (формула Томсона). В 1903 построил одну из первых моделей атома, предположив, что атом – это положительно заряженная сфера с вкрапленными в нее электронами. В 1904 Томсон высказал идею о том, что электроны в атоме образуют различные конфигурации, обусловливающие периодичность химических элементов; тем самым он попытался установить связь между электронной структурой атома и его химическими свойствами.

Начиная с 1905 Томсон приступил к детальному экспериментальному исследованию т.н. «каналовых» лучей – быстро движущихся частиц, образующихся за катодом газоразрядной трубки, в котором проделано отверстие. Отклоняя эти лучи в электрическом и магнитном полях, он разложил их на компоненты, число и свойства которых зависели от состава газа в трубке. Эта работа послужила основой масс-спектрометрии. В 1911 Томсон разработал метод парабол для измерения отношения массы частицы к ее заряду, что имело важное значение для исследования изотопов. В 1912 получил первые данные о существовании изотопов – обнаружил атомы неона с массой 20 и 22.

Кавендишская лаборатория за время, когда ее возглавлял Томсон, превратилась в ведущий исследовательский центр. Здесь под руководством Томсона работали Ф.Астон, У.Вильсон, Э.Резерфорд, У.Ричардсон и др. За научные заслуги Томсон был награжден медалями Б.Франклина (1923), М.Фарадея (1938), Копли (1914) и др.

– английский физик, обладатель Нобелевской премии, один из основоположников классической электронной теории металлов. Автор исследований катодных лучей и прохождения тока в разреженных газах. Открыт электрон и определил его заряд.

Родился Джозеф Томсон 18 декабря 1856 года в английском городке Читхэм-Хилл, пригороде Манчестера. Его отец был книготорговцем, он хотел дать сыну инженерное образование. В 14 лет Джозефа послали на учебу в Оуэнс-колледж в Манчестер, а затем в Тринити-колледж при Кембриджском университете. При колледже открылись курсы экспериментальной физики, которые по сути и определили дальнейшую судьбу Джозефа Томсона – он всерьез увлекся физикой и математикой. После окончания колледжа в 1880 году Джозеф получает степень бакалавра по математике. В этом году юный ученый пишет статью на тему «Электромагнитная теория света» и уже через год становится членом ученого совета Тринити-колледжа. К 1884 году Томсон уже профессор Кембриджского университета и руководитель Кавендишской лаборатории при колледже.

Занимаясь изучением прохождения электрического тока через разреженные газы, Томсон в 1897 году открывает электрон. Кроме того, он определяет его заряд и отношение заряда к массе электрона. За свои исследования ученому в 1906 году присуждают Нобелевскую премию в области физики. Также Джозеф Джон разработал теорию движения, открытого им электрона, в электрическом и магнитном полях . На основании своих наблюдений, Томсон предлагает свою модель атома. Он предложил, что атом – это положительно заряженная сфера с вкрапленными в нее электронами. Хотя в последствие она была опровергнута его последователями, но все же сыграла огромную роль в процессе изучения строения материи.

Джозеф Джон Томсон является одним из основоположников классической электронной теории металлов. Его формула (формула Томсона) до сих пор применяется в физике элементарных частиц для определения эффективного сечения рассеяния электромагнитных волн свободными электронами.

Результаты его исследований сыграли важную роль в дальнейшем открытии фотоэффекта и термоэлектрической эмиссии. Джозеф Томсон установил природу положительных ионов, дал объяснение непрерывному спектру рентгеновского излучения. Он разработал метод парабол для измерения отношения электрического заряда элементарной частицы к ее массе, тем самым открыл путь для масштабного изучения изотопов.

За свою научную деятельность ученый был награжден медалями Франклина , Фарадея, Копли, Юза. Был лауреатом Нобелевской премии. Являлся членом Академий наук многих стран. Умер Джозеф Джон Томсон 30 августа 1940 году в Кембридже. За заслуги в области научной деятельности и величайший вклад в развитие многих направлений науки был похоронен в Вестминстерском аббатстве в Лондоне.



Поделиться