Пищеварительная цепочка животных. Пространственная структура популяции - это особенности размещения особей популяции в пространстве. Типы трофических цепей

Вступление

Яркий пример цепи питания:

Классификация живых организмов относительно роли в круговороте веществ

В любой цепи питания участвует 3 группы живых организмов:

Продуценты

(производители )

Консументы

(потребители )

Редуценты

(разрушители )

Автотрофные живые организмы, которые синтезируют органическое вещество из минерального с использованием энергии (растений).

Гетеротрофные живые организмы, которые потребляют (поедают, перерабатывают и т.п.) живое органическое вещество и передают энергию, содержащуюся в нём, по пищевым цепочкам. Гетеротрофные живые организмы, которые разрушают (перерабатывают) отмершее органическое вещество любого происхождения до минерального.

Связи между организмами в цепи питания

Цепь питания, какой бы она ни была, создаёт тесные связи между разнообразными объектами как живой природы, так и неживой. И разрыв абсолютно любого её звена может привести к плачевным результатам и дисбалансу в природе. Самым важным и неотъемлемым компонентом любой цепи питания является солнечная энергия. Не будет её - не будет жизни. При перемещении по цепи питания эта энергия перерабатывается, и каждый из организмов делает её своей собственной, передавая следующему звену лишь 10%.

Умирая, организм попадает в другие схожие цепочки питания, и таким образом круговорот веществ продолжается. Все организмы могут спокойно выходить из одних цепочек питания и переходить в другие.

Роль природных зон в круговороте веществ

Естественно, организмы, проживающие в одной и той же природной зоне, создают друг с другом свои особенные цепочки питания, которые не могут повториться в какой-либо другой зоне. Так, цепь питания степной зоны, например, состоит из большого разнообразия трав и животных. Деревья цепь питания в степи в себя практически не включает, так как их либо очень мало, либо они низкорослые. А что касается животного мира, то тут преобладают парнокопытные, грызуны, соколы (ястребы и другие подобные пернатые) и различного рода насекомые.

Классификация цепей питания

Принцип экологических пирамид

Если рассматривать конкретно цепи, начинающиеся с растений, то весь круговорот веществ в них происходит от фотосинтеза, в процессе которого поглощается солнечная энергия. Большую часть этой энергии растения расходуют на свою жизнедеятельность, и лишь 10% переходит к следующему звену. В итоге каждому последующему живому организму требуется всё больше и больше существ (объектов) предыдущего звена. Это хорошо показывают экологические пирамиды, которые чаще всего используются в этих целях. Они бывают пирамидами массы, количества и энергии.

ТРОФИЧЕСКИЕ ЦЕПИ

Цель работы : получение навыков составления и анализа пищевых (трофических) цепей.

Общие сведения

Между живыми организмами экосистем существуют разнообразные связи. Одной из центральных связей, которая как бы цементирует самые разные организмы в одну экосистему, является пищевая, или трофическая. Пищевые связи объединяют между собой организмы по принципу пища - потребитель. Это ведет к возникновению пищевых, или трофических цепей. Внутри экосистемы содержащие энергию вещества создаются автотрофными организмами и служат пищей для гетеротрофов. Пищевые связи - это механизмы передачи энергии от одного организма к другому. Типичный пример – животное поедает растения. Это животное, в свою очередь, может быть съедено другим животным. Таким путем может происходить перенос энергии через ряд организмов

Каждый последующий питается предыдущим, поставляющим ему сырье и энергию.

Такая последовательность переноса энергии пищи в процессе питания от ее источника через последовательный ряд живых организмов называется пищевой (трофической) цепью, или цепью питания.Трофические цепи - это путь однонаправленного потока солнечной энергии, поглощенной в процессе фотосинтеза, через живые организмы экосистемы в окружающую среду, где неиспользованная часть ее рассеивается в виде низкотемпературной тепловой энергии.

ные мыши, воробьи, голуби. Иногда в экологической литературе любую пищевую связь называют связью «хищник – жертва», понимая под хищником поедателя. Стабильность системы «хищник-жертва» обеспечивается следующими факторами:

- неэффективность хищника, бегство жертвы;

- экологические ограничения, налагаемые внешней средой на численность популяции;

- наличие у хищников альтернативных пищевых ресурсов;

- уменьшение запаздывания в реакции хищника.

Место каждого звена в цепи питания являетсятрофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемыепервичные продуценты. Организмы второго трофического уровня называютсяпер-

вичными консументами, третьего - вторичными консументамии т. д.

Трофические цепи делятся на два основных типа: пастбищные (цепи выедания, цепи потребления) идетритные (цепи разложения).

Растение → заяц → волк Продуцент → травоядное животное → плотоядное животное

Широко распространены и такие пищевые цепи:

Растительный материал (например, нектар) → муха → паук → землеройка → сова.

Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица.

В водных, в частности, морских экосистемах пищевые цепи хищников длиннее, чем в наземных.

Детритная цепь начинается с мертвого органического вещества - детрита, который разрушается детритофагами, поедаемыми мелкими хищниками, и заканчивается работой редуцентов, минерализующих органические остатки. В детритных пищевых цепях наземных экосистем важную роль играют лиственные леса, большая часть листвы которых не употребляется растительноядными животными в пищу и входит в состав лесной подстилки. Листья измельчаются многочисленными детритофагами (грибами, бактериями, насекомыми), далее заглатываются дождевыми червями, которые осуществляют равномерное распределение гумуса в поверхностном слое почвы, образуя мулль. Разлагающие

микроорганизмы, завершающие цепь, производят окончательную минерализацию мертвых органических остатков (рис. 1).

В целом типичные детритные цепи наших лесов можно представить следующим образом:

листовая подстилка → дождевой червь → черный дрозд → ястребперепелятник;

мертвое животное → личинки падальных мух → травяная лягушка → уж.

Рис. 1. Детритная пищевая цепь (по Небелу, 1993)

В качестве исходного органического материала, который подвергается в почве биологической переработке организмами, населяющими почву, можно для примера рассмотреть древесину. Древесина, попадающая на поверхность почвы, прежде всего, подвергается переработке личинками насекомых усачей, златок, сверлил, которые используют ее в пищу. Им на смену приходят грибы, мицелий которых в первую очередь поселяется в ходах, проделанных в древесине насекомыми. Грибы еще сильнее разрыхляют и разрушают древесину. Такая рыхлая древесина и сам мицелий оказываются пищей для личинок огнецветки. На следующем этапе в уже сильно разрушенной древесине поселяются муравьи, которые уничтожают почти всех личинок и создают условия для поселения в древесине новой генерации грибов. Такими грибами начинают кормиться улитки. Завершают же разрушение и гумификацию древесины микробы-редуценты.

Аналогично идет гумификация и минерализация навоза диких и домашних животных, поступающего в почву.

Как правило, пища каждого живого существа более или менее разнообразна. Только все зеленые растения «питаются» одинаково: углекислым газом и ионами минеральных солей. У животных случаи узкой специализации питания довольно редки. В результате возможной смены питания животных все организмы экосистем вовлечены в сложную сеть пищевых взаимоотношений. Пищевые цепи тесно переплетаются друг с другом, образуя пищевые, или трофические сети. В трофической сети каждый вид прямо или косвенно связан со многими. Пример трофической сети с размещением организмов по трофическим уровням представлен на рис. 2.

Пищевые сети в экосистемах весьма сложные, и можно сделать вывод, что поступающая в них энергия долго мигрирует от одного организма к другому.

Рис. 2. Трофическая сеть

В биоценозах пищевые связи играют двоякую роль. Во-первых, они

обеспечивают передачу вещества и энергии от одного организма к другому.

Вместе, таким образом, уживаются виды, которые поддерживают жизнь друг друга. Во-вторых, пищевые связислужат механизмом регуляции численно-

Представление трофических сетей может быть традиционным (рис.2) или с использованием ориентированных графов (орграфов).

Геометрически ориентированный граф можно представить в виде набора вершин, обозначаемых кружками с номерами вершин, и дуг, соединяющих эти вершины. Дуга задаёт направление от одной вершины к другой.Путём в графе называется такая конечная последовательность дуг, в которой начало каждой последующей дуги совпадает с концом предыдущей. Дуги можно обозначать парой вершин, которые она соединяет. Путь записывается в виде последовательности вершин, через которые он проходит.Контуром называется путь, начальная вершина которого совпадает с конечной.

НАПРИМЕР:

Вершины;

А – дуги;

В – контур, проходящий через вершины 2, 4,

В 3;

1, 2 или 1, 3, 2 – пути от вершины

к вершине

В сети питания вершиной графа отображаются объекты моделирования; дуги, обозначаемые стрелками, проводят от жертвы кхищнику.

Любой живой организм занимает определённую экологическую нишу . Экологическая ниша – это совокупность территориальных и функциональных характеристик среды обитания, соответствующих требованиям данного вида. Никакие два вида не имеют в экологическом фазовом пространстве одинаковых ниш. Согласно принципу конкурентного исключения Гаузе, два вида с близкими экологическими требованиями длительное время не могут занимать одну экологическую нишу. Эти виды конкурируют, и один из них вытесняет другой. На основе сетей питания можно построитьграф конкуренции. Живые организмы в графе конкуренции отображаются в виде вершин графа, между вершинами проводится ребро (связь без направления) в том случае, если существуетживой организм , который служит пищей для организмов, отображаемых вышеуказанными вершинами.

Разработка графа конкуренции позволяет выделить конкурирующие виды организмов и проанализировать функционирование экосистемы и её уязвимость.

Широко распространён принцип соответствия роста сложности экосистемы и увеличения её устойчивости. Если экосистема представлена сетью питания, можно использовать разные способы измерения сложности:

- определить число дуг;

- найти отношение числа дуг к числу вершин;

Для измерения сложности и разнообразия сети питания используется также трофический уровень, т.е. место организма в цепи питания. Трофический уровень можно определять как по наиболее короткой, как и по наиболее длинной цепи питания от рассматриваемой вершины, имеющей трофический уровень, равный «1».

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1

Составьте сеть для 5 участников: трава, птицы, насекомые, зайцы, лисы.

Задание 2

Установите цепи питания и трофический уровень по наиболее короткому и наиболее длинному пути сети питания из задания «1».

Трофический уровень и пищевая цепь

сети питания

по кратчайшему пути

по наиболее длинному пути

4 . Насекомые

Примечание: пастбищная пищевая цепь начинается с продуцентов . Организм, указанный в колонке 1, является верхним трофическим уровнем. Для консументов I порядка длинный и короткий пути трофической цепи совпадают.

Задание 3

Предложите трофическую сеть согласно варианта задания (табл. 1П) и составьте таблицу трофических уровней по наиболее длинному и наиболее короткому пути. Пищевые предпочтения консументов приведены в табл. 2П.

Задание 4

Составьте трофическую сеть по рис. 3 и разместите ее участников по трофическим уровням

ПЛАН ОТЧЕТА

1. Цель работы.

2. Граф трофической сети и граф конкуренции по учебному примеру (задания 1, 2).

3. Таблица трофических уровней по учебному примеру (задание 3).

4. Граф сети питания, граф конкуренции, таблица трофических уровней согласно варианту задания.

5. Схема трофической сети с размещением организмов по трофическим уровням (по рис.3).

Рис. 3. Биоценоз тундры.

Первый ряд: мелкие воробьиные, различные двукрылые насекомые, мохноногий канюк. Второй ряд: песец, лемминги, полярная сова. Третий ряд: белая куропатка, зайцы-беляки. Четвертый ряд: гусь, волк, северный олень.

Литература

1. Реймерс Н.Ф. Природопользование: Словарь-справочник. – М.: Мысль, 1990. 637 с.

2. Жизнь животных в 7-ми томах. М.: Просвещение, 1983-1989.

3. Злобин Ю.А. Общая экология. Киев.: Наукова думка, 1998. – 430 с.

4. Степановских А.С. Экология: Учебник для вузов. – М.: ЮНИТИДАНА,

5. Небел Б. Наука об окружающей среде: как устроен мир. – М.: Мир, 1993.

–т.1 – 424 с.

6. Экология: Учебник для технических вузов/ Л.И. Цветкова, М.И. Алексеев, и др.; Под ред. Л.И. Цветковой. –М.: АСВ; СПб: Химиздат, 2001.-552с.

7. Гирусов Э.В. и др. Экология и экономика природопользования: Учебник для вузов/Под ред. Проф. Э.В. Гирусова. – М.: Закон и право, ЮНИТИ,

Таблица 1П

Видовая структура биоценоза

Название био-

Видовой состав биоценоза

Кедровник

Кедр корейский, береза желтая, лещина разнолистная,

осока, заяц-беляк, белка летяга, белка обыкновенная,

волк, бурый медведь, гималайский медведь, соболь,

мышь, кедровка, дятел, папоротник.

Заболоченный

Осоки, ирис, тростник обыкновенный.Заходят волк, лиса,

бурый медведь, косуля, мышь. Амфибии – углозуб сибир-

вейниковый

ский, квакша дальневосточная, лягушка сибирская. Улит-

ка, земляной червь. Птицы – дальневосточный белый

аист, пегий лунь, фазан, японский журавль, даурский жу-

равль. Бабочки махаоны.

Белоберезовый

Осина, береза плосколистная (белая) осина, ольха, дио-

скорея ниппонская (травянистая лиана), злаки, осоки,

разнотравье (клевер, чина). Кустарники – леспедеца, ря-

бинник, таволга. Грибы – подберезовики, подосиновики.

Животные - енотовидная собака, волк, лиса, медведь бу-

рый, колонок, изюбрь, косуля, углозуб сибирский, лягуш-

ка сибирская, мышь. Птицы – подорлик большой, синица,

Ельник травя-

Растения – пихта, лиственница, кедр корейский, клен, ря-

бинник рябинолистный, жимолость, ель, осоки, злаки.

кустарниковый

Животные – заяц-беляк, белка обыкновенная, белка летя-

га, волк, медведь бурый, медведь гималайский, соболь,

харза, рысь, изюбрь, лось, рябчик, сова, мышь, бабочка

Растения - дуб монгольский, осина, береза плосколистная,

липа, ильм, маакия (единственное на Дальнем Востоке

дерево, относящееся к семейству бобовых), кустарники –

леспедеца, калина, рябинник рябинолистный, шиповник,

травы – ландыш, осоки, чемерица, черемша, бубенчики,

колокольчики. Животные – бурундук, енотовидная соба-

ка, волк, лиса, медведь бурый, барсук, колонок, рысь, ка-

бан, изюбрь, косуля, заяц, углозуб сибирский, квакша

дальневосточная, лягушка сибирская, мышь, ящерица жи-

вородящая, сойка, дятел, поползень, жук-дровосек, кузне-

Растения - осина, береза плосколистная, боярышник, ши-

повник, спирея, пион, злаки. Животные – енотовидная

собака, волк, лиса, медведь бурый, колонок, изюбрь, ко-

суля, углозуб сибирский, лягушка сибирская, мышь, яще-

рица живородящая, сойка, дятел, поползень, подорлик,

жук-дровосек, кузнечик,

Таблица 2П

Спектр питания некоторых видов

Живые организмы

Пищевые пристрастия - «меню»

Трава (злаки, осоки); кора осины, липы, лещины; ягоды (земляни-

Семена злаков, насекомые, черви.

Белка летяга

и их личинки.

Растения

Потребляют солнечную энергию и минеральные вещества, воду,

кислород, углекислый газ.

Грызуны, зайцы, лягушки, ящерицы, мелкие птицы.

Белка обыкновен-

Кедровые орехи, орехи лещины, желуди, семена злаков.

Семена кустарников (элеутерококк), ягоды (брусника), насекомые

и их личинки.

Личинки насеко-

Личинки комаров – водоросли, бактерии.

мых комаров,

Личинки стрекоз – насекомые, мальки рыб.

Сок трав.

Грызуны, зайцы, лягушки, ящерицы.

Орлан белоплечий

Рыба, мелкие птицы.

Медведь бурый

Эврифаг, предпочтение отдает животной пище: кабаны (подсвин-

ки), рыба (лосось). Ягоды (малина, черемуха, жимолость, голуби-

ка), коренья.

Медведь гималай-

Дудник (медвежья дудка), лесные ягоды (брусника, малина, чере-

муха, голубика), мед (осы, пчелы), лилейные (луковицы), грибы,

орехи, желуди, личинки муравьев.

Насекомые

Травянистые растения, листья деревьев.

Мышь, белка, зайчата, рябчик.

Хищник. Зайцы, белка, подсвинки.

трава (хвощ зимующий), бобовые (вика, чина),

кора лещины, ив, подрост берез, корни кустарников (ле-

щина, малина).

Почки берез, ольхи, липы; злаки; ягоды рябины, калины; хвоя пих-

ты, ели, лиственницы.

Мышь, бурундук, зайчата, лисята, змеи (уж, полоз), ящерица, бел-

ка, летучая мышь.

Мыши, зайцы, косуля, стаей могут убить оленя, лося, кабана.

Уховертка

Хищник. Блохи, жуки (мелкие), слизни, дождевые черви.

Жук -дровосек

Кора березы, кедра, липы, кленов, лиственницы.

Пыльца растений.

павлиноглазка

Мышь, зайчата, бурундук, углозуб сибирский, птенцы журавлей,

аиста, уток; квакша дальневосточная, фазанята, черви,

крупные насекомые.

Кора лещины, березы, ив, дуба, осока, вейник, тростник; листья бе-

резы, ивы, дуба, лещины.

Хищник. Рачки, личинки комара.

Квакша дальнево-

Водные беспозвоночные.

Травы (вейник), осока, грибы, растительные остатки и почва.

Растения, рыба и ее икра во время нереста, насекомые и их личин-

Земляной червяк

Отмершие растительные остатки.

Дальневосточный

Улитка, квакша, сибирская лягушка, рыба (вьюн, ротан), змеи,

белый аист

мыши, саранча, птенцы воробьиных птиц.

Журавль японский

Корневища осок, рыба, лягушки, мелкие грызуны, птенцы.

Лунь пегий

Мышь, мелкие птицы (овсянки, камышевки, воробья), лягушки,

ящерицы, крупные насекомые.

Почки березы, ольхи, вейник.

Бабочки махаоны

Пыльца растений (фиалки, хохлатки).

Плотояден предпочтение отдает животной пище – зайцы, молодые

лосята, косули, олени, кабаны.

Енотовидная со-

Рыба тухлая, птицы (жаворонки, овсяницы, камышевки).

Веточный корм (береза, осина, ива, лещина; листья дуба, липы),

желуди, кора дуба, водоросли на мелководьях, вахта трехлистная.

Комар, пауки, муравьи, кузнечики.

Ящерица живоро-

Насекомые и их личинки, черви дождевые.

Подорлик

Хищник. Мелкие млекопитающие, фазан, мыши, зайцы, лисята,

птицы, рыба, грызуны.

Белки, бурундуки, птицы.

Бурундук

Семена яблони, шиповника, калины, рябинника, рябины; грибы;

орехи; желуди.

Корни, черви дождевые, мыши, насекомые (муравьи и их личинки).

Хищник. Мыши.

Семена злаков, орехи.

Орехи кедровые, желуди, ягода (рябина), яблоня.

Жуки дровосеки, насекомые древоточцы.

Кабан, заяц, косуля, лосята, оленята, лось, олень (подранки).

Поползень

Насекомые; семена древесных, ягоды, орехи.

Лемминги

Зерноядные. Осоки, шикша, злаки.

Зерноядные.

Хищник. Лемминги, птенцы куропаток, чаек.

Полярная сова

Лемминги, мыши полевки, зайцы, утки, фазаны, тетерева.

Белая куропатка

Растительноядные. Семена злаков; почки берез, ив, ольхи.

Травоядные, листья и кора деревьев, мох – ягель.

Заяц-беляк

Зимой – кора; летом – ягоды, грибы.

Травоядные. Осоки, злаки, водоросли, побеги водных растений.

Северный олень

Ягель, злаки, ягоды (морошка, клюква), мыши.

Косуля, изюбр, пятнистый олень, кабан.

Дафнии, циклопы

Одноклеточные водоросли.

Перенос энергии в экосистеме осуществляется через так называемые пищевые цепи . В свою очередь, пищевая цепь - это перенос энергии от ее первоначального источника (обычно им являются автотрофы) через ряд организмов, путем поедания одних другими. Пищевые цепи подразделяются на два вида:

Сосна обыкновенная => Тли => Божьи коровки => Пауки =>Насекомоядные

птицы => Хищные птицы.

Трава => Травоядные млекопитающие => Блохи => Жгутиконосцы.

2) Детритная пищевая цепь. Она берет свое начало от мертвого органического вещества (т.н. детрита ), которое либо потреблятеся в пищу мелкими, преймущественно беспозвоночными животными, либо разлагается бактериями или грибами. Организмы, потребляющие мертвое органическое вещество, называются детритофагами , разлагающие его - деструкторами .

Пастбищная и детритная пищевые цепи обычно существуют в экосистемах совместно, но один из видов пищевых цепей почти всегда доминирует над другим. В некоторых же специфических средах (например в подземной), где из-за отсутствия света невозможна жизнедеятельность зеленых растений, существуют только детритные пищевые цепи.

В экосистемах пещевые цепи не изолированы друг от друга, а тесно переплетены. Они составляют так называемые пищевые сети . Это происходит потому, что каждый продуцент имеет не одного, а нескольких консументов, которые, в свою очередь, могут иметь несколько источников питания. Взаимосвязи внутри пищевой сети наглядно иллюстрирует приведенная ниже схема.

Схема пищевой сети.

В пищевых цепях образуются так называемые трофические уровни . Трофические уровни классифицируют организмы в пищевой цепи по типам их жизнедеятельности или по источникам получения энергии. Растения занимают первый трофический уровень (уровень продуцентов), травоядные (консументы первого порядка) относятся ко второму трофическому уровню, хищники, поедающие травоядных, образуют третий трофический уровень, вторичные хищники - четвертый и т.д. первого порядка.

Поток энергии в экосистеме

Как нам известно, перенос энергии в экосистеме осуществляется через пищевые цепи. Но далеко не вся энергия предыдущего трофического уровня переходит на следующий. В качестве примера можно привести следующую ситуацию: чистая первичная продукция в экосистеме (то есть количество энергии, накопленное продуцентами) составляет 200 ккал/м^2, вторичная продуктивность (энергия, накопленная консументами первого порядка) равна 20 ккал/м^2 или 10% от предыдущего трофческого уровня, энергия же следующего уровня составляет 2 ккал/м^2, что равно 20% от энергии предыдущего уровня. Как видно из данного примера, при каждом переходе на более высокий уровень теряется 80-90% энергии предыдущего звена пищевой цепи. Подобные потери связаны с тем, что значительная часть энергии при переходе с одной ступени на другую не усваивается представителями следующего трофического уровня или превращается в тепло, недоступное для использования живыми организмами.

Универсальная модель потока энергии.

Поступление и расход энергии можно рассмотреть с помощью универсальной модели потока энергии . Она применима к любому живому компоненту экосистемы: растению, животному, микроорганизмам, популяции или трофической группе. Подобные графические модели, соединенные между собой, могут отражать пищевые цепи (при последовательном соединении схем потока энергии нескольких трофических уровней образуется схема потока энергии в пищевой цепи) или биоэнергетику в целом. Поступившая в биомассу энергия на схеме имеет обозначение I . Однако, часть поступившей энергии, не подвергается превращнию (на рисунке обозначена, как NU ). Например, это происходит в случае, когда часть света, проходящего через растения, не поглощается ими, или когда часть пищи, проходящей через пищеварительный тракт животного, не усваивается его организмом. Усвоенная (или ассимилированная ) энергия (обозначенная за A ) используется для различных целей. Она тратитися на дыхание (на схеме-R ) т.е. на поддержание жизнедеятельности биомассы и на продуцирование органического вещества (P ). Продукция, в свою очередь, принимате различные формы. Она выражается в энергетических затратах на рост биомассы (G ), в различных выделениях органического вещетсва во внешнюю среду (E ), в запасе энергии организмом (S ) (примером подобного запаса являются жировые накопления). Запасенная энергия образует на схеме так называемую рабочую петлю , так как данная часть продукции используется для обеспечения энергией в будущем (напимер, хищник использует свой запас энергии для поиска новых жертв). Оставшаяся часть продукции представляет собой биомассу (B ).

Универсальную модель потока энергии можно интерпретировать двояко. Во-первых она может представлять популяцию какого-либо вида. В данном случае каналы потока энергии и связи рассматриваемого вида с другими видами представляют собой схему пищевой цепи. Другая интерпритация трактует модель потока энергии как изображение какого-либо энергетического уровня. Тогда прямоугольник биомассы и каналы потока энергии представляют все популяции, поддерживаемые одним и тем же источником энергии.

Для того, чтобы наглядно показать различие подходов трактовки универсальной модели потока энергии можно рассмотреть пример с популяцией лис. Часть рациона лисиц составляет растительность (плоды и т.д.), другую же часть составляют травоядные животные. Чтобы подчеркнуть аспект внутрипопуляционной энергетики (первая интерпритация энергетической модели), всю популяцию лис следует изобразить в виде одного прямоугольника, если же нужно распределить метаболизм (метаболизм - обмен веществ, интенсивность обмена веществ) популяции лис на два трофических уровня, то есть отобразить соотношение ролей растительной и животной пищи в обмене веществ, необходимо построить два или несколько прямоугольников.

Зная универвальную модель потока энергии, можно определить отношение величин энергетического потока в разных точках пищевой цепи.Выраженные в процентах, эти отношения называют экологической эффективностью . Существует несколько групп экологических эффективностей. Первая группа энергетических отношений: B/R и P/R . Доля энергии, расходущейся на дыхание, велика в популяциях крупных организмов. При стрессовом воздействии внешней среды R возрастает. Величина P значительна в активных популяциях мелких организмов (например водорослей), а также в системах, получающих энергию извне.

Следующая группа отношений: A/I и P/A . Первое из них называется эффективностью ассимиляции (т.е. эффективностью использования поступившей энергии), второе - эффективностью роста тканей . Эффективность ассимиляции может варьироваться от 10 до 50% и выше. Она может либо достигать малой величины (при ассимиляции энергии света растениями), либо иметь большие значения (при ассимиляции энергии пищи животными). Обычно эффективность ассимиляции у животных зависит от их пищи. У растительноядных животных она достигает 80% при поедании семян, 60% при использовании в пищу молодой листвы, 30-40% - более старых листьев, 10-20% при питании древесиной. У хищных животных эффективность ассимиляции составляет 60-90%, так как животоная пища гораздо легче усваивается организмом, чем растительная.

Эффективность роста тканей также широко варьируется. Наибольших значений она достигает в тех случаях, когда организмы имеют небольшие размеры и условия среды их обитания не требуют больших энергетических затрат на поддержание оптимальной для роста организмов температуры.

Третья группа энергетических отношений: P/B . Если рассматривать P как скорость прироста продукции, P/B представляет собой отношение продукции в конкретный момент времени к биомассе. Если расчитывается продукция за определенный промежуток времени, значение отношения P/B определяется исходя из средней за этот промежуток времени биомассы. В данном случае P/B является безразмерной величиной и показывает, во сколько раз продукция больше или меньше биомассы.

Следует отметить, что на энергетические характеристики экосистемы оказывает влияние размеры организмов, населяющих экосистему. Установлена зависимость между размером организма и его удельным метаболизмом (метаболизмом на 1г. биомассы). Чем мельче организм, тем выше его удельный метаболизм и, следовательно, тем меньше биомасса, которая может поддерживаться на данном трофическом уровне экосистемы. При одинаковом количестве использованной энергии организмы больших размеров накапливают большую биомассу, чем мелкие. Например, при равном значении потребленной энергии, биомасса, накопленная бактериями, будет гораздо ниже биомассы, накопленной крупными организмами (наприемр млекопитающими). Иная картина открывается при рассмотрении продуктивности. Так как продуктивность - это скорость прироста биомассы, то она больше у мелких жвотных, которые имеют более высокие темпы размножения и обновления биомассы.

В связи с потерей энергии внутри пищевых цепей и зависимостью метаболизма от размера особей, каждое биологическое сообщество приобретает определеную трофическую структуру, которая может служить характеристикой экосистемы. Трофическая структура характеризуется или урожаем на корню, или количеством энергии, фиксируемой на единицу площади в единицу времени каждым последующим трофическим уровнем. Трофическую структуру можно изобразить графически в виде пирамид, основанием у которых служит первый трофический уровень (уровень продуцентов), а последующие трофические уровни образуют "этажи" пирамиды. Выделяют три типа экологических пирамид.

1) Пирамида численности (на схеме обозначена цифрой 1) Она отображает количество отдельных организмов на каждом из трофических уровней. Численность особей на разных трофических уровнях зависит от двух основных факторов. Первый из них - более высокий уровень удельного метаболизма у мелких животных по сравнению с крупными, что позволяет им иметь численное превосходство над крупными видами и более высокие темпы размножения. Другой из вышеназванных факторов - существование у хищных животных верхнего и нижнего предела размера их жертв. Если жертва намного крупнее хищника по размерам, то он будет не в состоянии ее одолеть. Добыча же небольшого размера не сможет удовлетворить энергетических потребностей хищника. Поэтому для каждого хищного вида существует оптимальный размер жертв Однако, для данного правила существуют исключения (например, змеи с помощью яда убивают животных, превышающих их по размерам). Пирамиды чисел могут быть обращены "острием" вниз в том случае, если продуценты намного превосходят первичных консументов по своим размерам (примером может служить экосистема леса, где продуцентами являются деревья, а первичными консументами - насекомые).

2) Пирамида биомассы (на схеме - 2). С ее помощью можно наглядно показать соотношения биомасс на каждом из трофических уровней. Она может быть прямой, если размер и срок жизни продуцентов достигает относительно больших величин (наземные и мелководные экосистемы), и обращенной, когда продуценты невелики по размеру и имеют короткий жизненный цикл (открытые и глубокие водоемы).

3) Пирамида энергии (на схеме - 3). Отражает величину потока энергии и продуктивность на каждом из трофических уровней. В отличии от пирамид численности и биомассы, пирамида энергии не может быть обращенной, так как переход энергии пищи на вышестоящие трофические уровни происходит с большими энергопотерями. Следовательно, суммарная энергия каждого предыдущего трофического уровня не может быть выше энергии последующего. Вышеприведеное рассуждение основано на использовании второго закона термодинамики, поэтому пирамида энергии в экосистеме служит его наглядной иллюстрацией.

Из всех названных выше трофических характеристик экосистемы только пирамида энергии дает наиболее полное представление об организации биологических сообществ. В пирамиде численности сильно преувеличена роль мелких организмов, а в пирамиде биомассы завышено значение крупных. В таком случае, данные критерии непригодны для сравнении функциональной роли популяции, сильно различающихся по значению отношения интенсивности метаболизма к размеру особей. По этой причине, именно поток энергии служит наиболее подходящим критерием для сравнения отдельных компонентов экосистемы между собой, а также для сравнения двух экосистем друг с другом.

Знание основных законов превращения энергии в экосистеме способствуют лучшему пониманию процессов функционрования экосистемы. Это особенно важно в связи с тем, что вмешательство человека в ее естественую "работу" может привести экологическую систему к гибели. В связи с этим, он должен уметь заранее предсказывать результаты своей деятельности, и представление об энергетических потоках в экосистеме сможет обеспечить большую точность этих предсказаний.


Цель: расширить знания о биотических факторах среды.

Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, пресмыкающихся, птиц, млекопитающих), коллекции насекомых, влажные препараты животных, иллюстрации различных растений и животных.

Ход работы:

1. Используйте оборудование и составьте две цепи питания. Помните, что цепь всегда начинается продуцентом и заканчивается редуцентом.

________________ →________________→_______________→_____________

2. Вспомните свои наблюдения в природе и составьте две цепи питания. Подпишите продуценты, консументы (1 и 2 порядков), редуценты.

________________ →________________→_______________→_____________

_______________ →________________→_______________→_____________

Что такое цепь питания и что лежит в её основе? Чем определяется устойчи-вость биоценоза? Сформулируйте вывод.

Вывод: ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Назовите организмы, которые должны быть на пропущенном месте следующих пищевых цепей

ЯСТРЕБ
ЛЯГУШКА
ЗМЕЕЯД
ВОРОБЕЙ
МЫШЬ
КОРОЕД
ПАУК

1. Из предложенного списка живых организмов составить трофическую сеть:

2. трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн.

4. Вывод: что отражают правила экологических пирамид?

1. Пшеница → мышь → змея → сапрофитные бактерии

Водоросль → рыбы → чайка → бактерии

2. Трава (продуцент) – кузнечик (консумент I порядка) – птицы (консумент II порядка) – бактерии.

Трава (продуценты) - лось (консумент I порядка) - волк (консумент II порядка) – бактерии.

Вывод: Цепь питания – ряд последовательно питающихся друг другом организмов. Цепи питания начинаются с автотрофов – зеленых растений.

3. нектар цветка → муха → паук → синица → ястреб

древесина → короед → дятел

трава → кузнечик → лягушка → уж → змееяд

листья →мышь → кукушка

семена → воробей → гадюка →аист

4. Из предложенного списка живых организмов составить трофическую сеть:

трава→кузнечик→лягушка→уж→бактерии гниения

кустарник→заяц→волк→муха→бактерии гниения

Это цепочки, сеть состоит из взаимодействия цепочек, но их текстом не ука-зать ну примерно так, главное, что цепь начинается всегда с продуцентов (расте-ний), а заканчивается всегда редуцентами.

Количество энергии всегда переходит по правилам 10 % на каждый следую-щий уровень переходит лишь 10 % всей энергии.

Трофическая (пищевая) цепь – последовательность видов организмов, отражающая движение в экосистеме органических веществ и заключенной в них биохимической энергии в процессе питания организмов. Термин происходит от греч.трофе – питание, пища.

Вывод: Следовательно, первая цепь питания – пастбищная, т.к. начинается с продуцентов, вторая – детритная, т.к. начинается с мертвой органики.

Все компоненты пищевых цепей распределяются на трофические уровни. Трофический уровень – это звено в цепи питания.

Колос, растения семейства злаки, однодольные.

Перенос энергии путём поедания живыми организмами друг друга называется пищевой цепью. Это специфические взаимоотношения растений, грибов, животных, микроорганизмов, обеспечивающие круговорот веществ в природе. Также называется трофической цепью.

Структура

Все организмы питаются, т.е. получают энергию, которая обеспечивает процессы жизнедеятельности. Систему трофической цепи образуют звенья. Звено пищевой цепочки - это группа живых организмов, связанная с соседней группой отношениями «пища - потребитель». Одни организмы являются пищей для других организмов, которые в свою очередь также являются пищей для третьей группы организмов.
Выделяют три типа звеньев:

  • продуценты - автотрофы;
  • консументы - гетеротрофы;
  • редуценты (деструкторы) - сапротрофы.

Рис. 1. Звенья пищевой цепочки.

В одну цепочку входят все три звена. Консументов может быть несколько (консументы первого, второго порядка и т.д.). Основу цепочки могут составлять продуценты или редуценты.

К продуцентам относятся растения, преобразовывающие органические вещества с помощью света в органические вещества, которые при поедании растений попадают в организм консумента первого порядка. Основным признаком консумента является гетеротрофность. При этом консументы могут потреблять как живые организмы, так и мёртвые (падаль).
Примеры консументов:

  • травоядные - заяц, корова, мышь;
  • хищные - леопард, сова, морж;
  • падальщики - гриф, тасманийский дьявол, шакал.

Некоторые консументы, в том числе и человек, занимают промежуточное положение, являясь всеядными. Такие животные могут выступать в роли консумента первого, второго и даже третьего порядка. Например, медведь питается ягодами и мелкими грызунами, т.е. одновременно является консументом первого и второго порядков.

К редуцентам относятся:

  • грибы;
  • бактерии;
  • простейшие;
  • черви;
  • личинки насекомых.

Рис. 2. Редуценты.

Редуценты питаются останками живых организмов и продуктами их жизнедеятельности, возвращая в почву неорганические вещества, которые потребляют продуценты.

Виды

Цепочки питания могут быть двух видов:

ТОП-4 статьи которые читают вместе с этой

  • пастбищные (цепь выедания);
  • детритные (цепь разложения).

Пастбищные цепи свойственны лугам, полям, морям, водоёмам. Началом цепи выедания являются автотрофные организмы - фотосинтезирующие растения.
Далее звенья цепочки располагаются следующим образом:

  • консументы первого порядка - растительноядные животные;
  • консументы второго порядка - хищники;
  • консументы третьего порядка - более крупные хищники;
  • редуценты.

В морских и океанических экосистемах цепи выедания более длинные, чем на суше. Они могут включать до пяти порядков консументов. Основу морских цепей составляет фотосинтезирующий фитопланктон.
Следующие звенья образует несколько консументов:

  • зоопланктон (рачки);
  • мелкая рыба (шпроты);
  • крупные хищные рыбы (сельдь);
  • крупные хищные млекопитающие (тюлени);
  • высшие хищники (касатки);
  • редуценты.

Детритные цепи характерны для лесов и саванн. Цепь начинается с редуцентов, которые питаются органическими останкам (детритом) и называются детриофагами. К ним относятся микроорганизмы, насекомые, черви. Все эти живые организмы становятся пищей для хищников высшего порядка, например, птиц, ежей, ящериц.

Примеры пищевых цепей двух типов:

  • пастбищные : клевер - заяц - лисица - микроорганизмы;
  • детритные : детрит - личинки мух - лягушка - уж - ястреб - микроорганизмы.

Рис. 3. Пример пищевой цепочки.

Вершину пищевой цепочки всегда занимает хищник, который является консументом последнего порядка в своём ареале. Численность высших хищников не регулируется другими хищниками и зависит только от внешних факторов среды. Примерами являются касатки, вараны, крупные акулы.

Что мы узнали?

Выяснили, какие есть пищевые цепи в природе и как в них располагаются звенья. Все живые организмы на Земле взаимосвязаны пищевыми цепочками, с помощью которых передаётся энергия. Автотрофы сами производят питательные вещества и являются пищей для гетеротрофов, которые, умирая, становятся питательной средой для сапротрофов. Редуценты также могут становиться пищей для консументов и производить питательную среду для продуцентов, не прерывая пищевую цепочку.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 203.



Поделиться