Школьная энциклопедия. Термодинамические системы и процессы. Стандартное состояние

Термодинамическая система – совокупность макроскопических тел, которые могут взаимо-действовать между собой и с другими телами (внешней средой) – обмениваться с ними энергией и веществом. Обмен энергией и веществом может происходить как внутри самой системы между ее частями, так и между системой и внешней средой. В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем.

Открытой системой называется термодинамическая система, которая может обмениваться веществом и энергией с внешней средой. Типичными примерами таких систем могут служить все живые организмы, а также жидкость, масса которой непрерывно уменьшается вследствие испарения или кипения.

Термодинамическая система называется закрытой , если она не может обмениваться с внешней средой ни энергией, ни веществом. Замкнутой системой будем называть термодина-мическую систему, изолированную в механическом отношении, т.е. не способную к обмену энергией с внешней средой путем совершения работы. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной , если она не может обмениваться с другими системами энергией путем теплообмена.

Термодинамическими параметрами (параметрами состояния) называются физические величины, служащие для характеристики состояния термодинамической системы.

Примерами термодинамических параметров являются давление, объем, температура, концентрация. Различают два типа термодинамических параметров: экстенсивные и интенсивные . Первые пропорциональны количеству вещества в данной термодинамической системе, вторые не зависят от количества вещества в системе. Простейшим экстенсивным параметром является объем V системы. Величину v , равную отношению объема системы к ее массе, называют удельным объе-мом системы. Простейшими интенсивными параметрами являются давление р и температура Т .

Давлением называется физическая величина

где dFn – модуль нормальной силы, действующей на малый участок поверхности тела пло-
щадью dS .

Если давление и удельный объем имеют ясный и простой физический смысл, то гораздо более сложным и менее наглядным является понятие температуры. Заметим прежде всего, что понятие температуры, строго говоря, имеет смысл только для равновесных состояний системы.

Равновесное состояние термодинамической системы – состояние системы, при котором все параметры имеют определенные значения и в котором система может оставаться сколько угодно долго. Температура во всех частях термодинамической системы, находящейся в равно-весном состоянии, одинакова.

При теплообмене между двумя телами с различной температурой происходит передача теплоты от тела с большей температурой к телу с меньшей температурой. Этот процесс прекра-щается, когда температуры обоих тел выравниваются.

Температура системы, находящейся в равновесном состоянии, служит мерой интенсивности теплового движения атомов, молекул и других частиц, образующих систему. В системе частиц, описываемых законами классической статистической физики и находящихся в равновесном состоянии, средняя кинетическая энергия теплового движения частиц прямо пропорциональна термодинамической температуре системы. Поэтому иногда говорят, что температура характе-ризует степень нагретости тела.

При измерении температуры, которое можно производить только косвенным путем, исполь-зуется зависимость от температуры целого ряда физических свойств тела, поддающихся прямому или косвенному измерению. Например, при изменении температуры тела изменяются его длина и объем, плотность, упругие свойства, электрическое сопротивление и т.д. Изменение любого из этих свойств является основой для измерений температуры. Для этого необходимо, чтобы для одного (выбранного) тела, называемого термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Для практических измерений температуры применяются температурные шкалы, установленные с помощью термометрических тел. В Международной стоградусной температурной шкале температура выражается в градусах Цельсия (°С) [А. Цельсий (1701–1744) – шведский ученый] и обозначается t , причем принимается, что при нормальном давлении 1,01325 × 10 5 Па температуры плавления льда и кипения воды равны, соответственно, 0 и 100 °С. В термодинамической температурной шкале температура выражается в Кельвинах (К) [У. Томсон, лорд Кельвин (1821–1907) – английский физик], обозначается Т и называется термодинамической температурой. Связь между термодинамической температурой Т и температурой по стоградусной шкале имеет вид T = t + 273,15.

Температура T = 0 К (по стоградусной шкале t = –273,15 °С) называется абсолютным нулем температуры, или нулем по термодинамической шкале температур.

Параметры состояния системы разделяются на внешние и внутренние. Внешними парамет-рами системы называются физические величины, зависящие от положения в пространстве и различных свойств (например электрических зарядов) тел, которые являются внешними по отношению к данной системе. Например, для газа таким параметром является объем V сосуда,
в котором находится газ, ибо объем зависит от расположения внешних тел – стенок сосуда. Атмосферное давление является внешним параметром для жидкости в открытом сосуде. Внутренними параметрами системы называются физические величины, зависящие как от положения внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему. Например, внутренними параметрами газа являются его давление и энергия, которые зависят от координат и скоростей движущихся молекул и от плотности газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматривае-мой термодинамической системы, характеризующееся изменением ее термодинамических параметров. Термодинамический процесс называется равновесным , если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому такие процессы называют квазистатическими .

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется (T = const);

б) изохорный процесс, происходящий при постоянном объеме системы (V = const);

в) изобарный процесс, происходящий при постоянном давлении в системе (p = const);

г) адиабатный процесс, происходящий без теплообмена между системой и внешней средой.

Основные параметры состояния термодинамических систем

Термодинамической системой называется совокупность различныхтел, способных энергетически взаимодействовать между собой и окру-жающей средой. При этом количество вещества может быть постоянным или переменным, а тела могут находиться в различных агрегатных состоя-ниях (газообразном, жидком или твердом).

Под окружающей средой понимается совокупность всех остальных тел, не вошедших в термодинамическую систему.

Термодинамическая система называется изолированной , если она не взаимодействует с окружающей средой, закрытой - если это взаимодейст-вие происходит только в форме обмена энергией, и открытой - если она обменивается с окружающей средой как энергией, так и веществом. Измене-ние состояния термодинамической системы в результате обмена энергией с окружающей средой называется термодинамическим процессом .

Основными параметрами, которыми характеризуются процессы вза-имного превращения работы и теплоты, являются температура Т , давление р и объем V .

Температура является мерой интенсивности движения молекул ве-щества. Чем больше кинетическая энергия движения молекул, тем выше температура. Температура, соответствующая состоянию полного покоя молекул газа, принята за абсолютный нуль. Эта точка является началом от-


счета температуры по абсолютной шкале Кельвина (обозначение - Т , К). В технике обычно используется стоградусная шкала температур Цельсия (обозначение - t , °С), в которой за 0 °С принята точка плавления льда, а за 100 градусов - постоянная точка кипения воды при нормальном атмо-сферном давлении.

Пересчет температуры из стоградусной шкалы в абсолютную произ-водится по формуле

Т = t +273,15К, (2.2)

при этом по размеру градус Цельсия равен кельвину: 1 °С = 1 К, т. е.

Температура определяет направление перехода теплоты, выступает как мера нагретости тел. Две системы, находящиеся между собой в тепло-вом равновесии, имеют одинаковые температуры.

Давление газа. Согласно кинетической теории,газ,находящийся взакрытом сосуде, оказывает на его стенки давление, которое является ре-зультатом силового воздействия молекул газа, находящихся в беспорядоч-ном движении. Давление определяется как сила, действующая на единицу поверхности, и измеряется в паскалях (Па = Н/м 2).

Сумма барометрического (атмосферного) и избыточного давления, оказываемого газом на стенки сосуда, составляет абсолютное давление:

где V - объем, занимаемый газом, м 3 ; М - масса газа в объеме V , кг. Количество вещества, содержащееся в единице объема, называют

плотностью газа ρ , кг/м 3 . Она является обратной величиной по отношению к удельному объему.

Состояние термодинамической системы, характеризуемое постоян-ным во времени и во всей массе системы значением параметров, называет-ся равновесным . В системе, находящейся в термодинамическом равнове-сии, отсутствует всякий поток тепла и вещества как внутри системы, так и между системой и окружающей средой. Равновесное состояние газа можно выразить уравнением f (р , V , T) = 0.


Идеальным газом называется газ,состоящий из молекул,размерамикоторых можно пренебречь и которые не взаимодействуют между собой (отсутствует потенциальная энергия взаимодействия). Введение понятия идеального газа в термодинамике позволяет получить более простые ана-литические зависимости между параметрами состояния. Опыт показывает, что с известным приближением эти зависимости могут быть применены для изучения свойств реальных газов.

Определение 1

Термодинамическая система - совокупность и постоянство макроскопических физических тел, которые всегда взаимодействуют между собой и с другими элементами, обмениваясь с ними энергией.

Под системой в термодинамике ими принято понимать макроскопические физические формы, которые состоят из огромного количества частиц, не предполагающие применение макроскопических показателей для описания каждой отдельного элемента. Нет определенных ограничений в природе материальных тел, являющиеся составными компонентами таких концепций. Они могут быть представлены в виде атомов, молекул, электронов, ионов и фотонов

Термодинамические системы бывают трех основных видов:

  • изолированные – обмен с веществом или энергией с окружающей средой не выполняется;
  • закрытые - тело не взаимосвязано с окружающей средой;
  • открытые - есть и энерго- и массообмен с внешним пространством.

Энергию любой термодинамической системы можно разделить на зависящую от положения и движения системы энергию, а также энергию, которая определяется движением и взаимодействием микрочастиц, образующих концепцию. Вторую часть называют в физике внутренней энергией системы.

Особенности термодинамических систем

Рисунок 1. Типы термодинамических систем. Автор24 - интернет-биржа студенческих работ

Замечание 1

В качестве отличительных характеристик систем в термодинамике можно привести любой предмет, наблюдаемый без использования микроскопов и телескопов.

Чтобы предоставить полноценное описание такой концепции, необходимо подобрать макроскопические детали, посредством которых возможно точно определить давление, объем, температуру, величину магнитной индукции, электрическую поляризацию, химический состав, массу движущихся компонентов.

Для любых термодинамических систем есть условные, либо реальные пределы, отделяющие их от окружающей среды. Вместо них часто рассматривают понятие термостата, которое характеризуется таким высоким показателем теплоемкости, что в случае теплообмена с анализируемой концепцией температурный параметр сохраняет неизменное значение.

В зависимости от общего характера взаимодействия термодинамической системы с окружающей средой, принято выделять:

  • изолированные виды, которые не обмениваются ни веществом, ни энергией с внешней средой;
  • адиабатически изолированные- системы, не совершающие обмена с внешней средой веществом, но вступающие в обмен энергией;
  • закрытые системы- те, у которых нет обмена с веществом, допускается только незначительное изменение величины внутренней энергии;
  • открытые системы - те что характеризуются полноценной передачей энергии, вещества;
  • частично открытые – обладают полупроницаемыми перегородками, поэтому не в полной мере участвуют в материальном обмене.

В зависимости от формулировки, значения термодинамической концепции, могут подразделяться на простые и сложные варианты.

Внутренняя энергия систем в термодинамике

Рисунок 2. Внутренняя энергия термодинамической системы. Автор24 - интернет-биржа студенческих работ

Замечание 2

К основным термодинамическим показателям, которые непосредственно зависят от массы системы, относят внутреннюю энергию.

Она включает в себя кинетическую энергию, обусловленную движением элементарных частиц вещества, а также потенциальную энергию, появляющуюся во время взаимодействия молекул между собой. Этот параметр всегда является однозначным. То есть значение и реализация внутренней энергии постоянны всякий раз, как концепция оказывается в нужном состоянии, независимо от того, каким методом это положение было достигнуто.

В системах, химический состав которых в процессе энергетических преобразований остается неизменным, при определении внутренней энергии важно учитывать только энергию теплового движения материальных частиц.

Хорошим примером такой системы в термодинамике является идеальный газ. Свободная энергия есть определенная работа, которую могло бы совершить физическое тело в изотермическом обратимом процессе, или свободная энергия представляет собой максимально возможной функционал, который может совершить концепция, обладая существенным запасом внутренней энергии. Внутренняя энергия системы приравнивается сумме связанное и свободной напряженности.

Определение 2

Связанная энергия – это та часть внутренней энергии, которая не способна самостоятельно превратиться в работу, – это обесцененный элемент внутренней энергии.

При одной и той же температуре указанный параметр увеличивается с ростом энтропия. Таким образом, энтропия термодинамической системы есть мера обеспеченности ее начальной энергии. В термодинамике есть еще определение – энергетическая потеря в стабильной изолированной системе

Обратимый процесс является термодинамическим процессом, который может быстро проходить как в обратном, так и в прямом направлении, проходя через одинаковые промежуточные положения, причем концепция в итоге возвращается в исходное состояние без затрат внутренней энергии, и в окружающем пространстве не остается макроскопических изменений.

Обратимые процессы дают максимальную работу. Самый лучший результат работы от системы на практике получить невозможно. Это придает обратимым явлениям теоретическую значимость, которая протекает бесконечно медленно, и можно только на небольшие расстояния приблизиться к нему.

Определение 3

Необратимым в науке называется процесс, который нельзя осуществить в противоположную сторону через все те же промежуточные состояния.

Все реальные явления в любом случае необратимы. Примеры таких эффектов: термодиффузия, диффузия, вязкое течение и теплопроводность. Переход кинетической и внутренней энергии макроскопического движения через постоянное трение в теплоту, то есть в саму систему, является необратимым процессом.

Переменные состояния систем

Состояние любой термодинамической системы можно определить по текущему сочетанию ее характеристик или свойств. Все новые переменные, которые в полной мере определяются только в определенный момент времени и не зависят от того, как именно концепция пришла в это положение, называются термодинамическими параметрами состояния или основными функциями пространства.

Система в термодинамике считается стационарной, если переменные значения с течением времени остаются стабильными и не изменяются. Один из вариантов стационарного состояния - это термодинамическое равновесие. Любое, даже самое незначительное изменение в концепции, - уже физический процесс, поэтому в нем может быть от одного до нескольких переменных показателей состояния. Последовательность, в которой состояния системы систематически переходят друг в друга, носит название «путь процесса».

К сожалению, путаница с терминами и детальным описанием все еще существует, ибо одна и та же переменная в термодинамике может быть, как независимой, так и итогом сложения сразу нескольких функций системы. Поэтому такие термины, как «параметр состояния», «функция состояния», «переменная состояния» могут иногда рассматриваться в виде синонимов.

Термодинамическая система - это процесс или среда, которая используется при анализе передачи энергии. Термодинамическая система - это любая зона или пространство, ограниченное действительными или воображаемыми границами, выбранными для анализа энергии и ее преобразования. Границы ее могут быть неподвижными или подвижными .

Газ в металлическом сосуде является примером системы с неподвижными границами. Если необходимо проанализировать газ в баллоне для , стенки сосуда - это неподвижные границы. Если необходимо проанализировать воздух в воздушном шаре, поверхность воздушного шара - подвижная граница. Если нагреть воздух в воздушном шаре, эластичные стенки шарика растягиваются, и граница системы меняется с расширением газа.

Пространство, смежное с границей, называется средой. У всех термодинамических систем есть среда, которая может являться источником или забирать ее. Среда может также проделать работу над системой или испытывать на себе работу системы.

Системы могут быть большими или маленькими, в зависимости от границ. Например, система может охватывать всю холодильную систему или газ в одном из цилиндров компрессора. Она может существовать в вакууме или может содержать несколько фаз одного или более веществ. Следовательно, действительные системы могут содержать сухой воздух и (два вещества) или воду и водяной пар (две стадии одного и того же вещества). Однородная система состоит из одного вещества, одной его фазы или однородной смеси нескольких компонентов.

Системы бывают замкнутыми или открытыми . В замкнутой только энергия пересекает ее границы. Следовательно, теплота может переходить через границы замкнутой системы в среду или из среды в систему.

В открытой системе и энергия, и масса могут переходить из системы в среду и обратно. При анализе насосов и теплообменников необходима открытая система, так как жидкости должны пересекать границы при анализе. Если массовый расход открытой системы устойчивый и однородный, то ее называют открытой системой с постоянным расходом. Массовый расход показывает, открыта или закрыта она.

Состояние термодинамической системы определяется физическими свойствами вещества. Температура, давление, объем, внутренняя энергия, и энтропия - это свойства, определяющие состояние, при котором существует вещество. Так как состояние системы - это состояние равновесия, его можно определить, только когда свойства системы стабилизированы и больше не изменяются.

Другими словами, состояние системы можно описать, когда она находится в состоянии равновесия с окружающей средой.

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и в-вом. Т. с. состоит из столь большого числа структурных ч-ц (атомов, молекул), что её состояние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией в-в, образующих Т. с., и т. д.

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, в-ва и др.). Для равновесных Т. с. вводится понятие температуры как параметра , имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Св-ва равновесных Т. с. изучает равновесных процессов (термостатика); св-ва неравновесных систем - .

В термодинамике рассматривают: закрытые Т. с., не обменивающиеся в-вом с др. системами, обменивающиеся в-вом и энергией с др. системами; адиабатные Т. с., в к-рых отсутствует с др. системами; изолированные Т. с., не обменивающиеся с др. системами ни энергией, ни в-вом. Если система не изолирована, то её состояние может изменяться; изменение состояния Т. с. наз. термодинамическим процессом. Т. с. может быть физически однородной (гомогенной системой) и неоднородной (гетерогенной системой), состоящей из неск. однородных частей с разными физ. св-вами. В результате фазовых и хим. превращений (см. ФАЗОВЫЙ ПЕРЕХОД) гомогенная Т. с. может стать гетерогенной и наоборот.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и веществом. Т. с. состоит из столь большого числа структурных частиц (атомов, молекул), что её со-стойние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией веществ, образующих Т. с., и т. д.

Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Для равновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Свойства равновесных Т. с. изучает термодинамика равновесных процессов (термостатика), свойства не-равновесных систем - термодинамика неравновесных процессов.

В термодинамике рассматривают: з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами; открытые системы, обменивающиеся веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; и з о л и р о в а н н ы е Т. гомогенной системой)и неоднородной ( гетерогенной системой), состоящей из нескольких однородных частей с разными физ. свойствами. В результате фазовых и хим. превращений (см. Фазовый переход )гомогенная Т. с. может стать гетерогенной и наоборот.

Лит.: Эпштейн П. С., Курс термодинамики, пер. с англ., М.- Л., 1948; Леонтович М. А., Введение в термодинамику, 2 изд., М.-Л., 1951; Самойлович А, Г., Термодинамика и , 2 изд., М., 1955.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА" в других словарях:

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными) и характеризующееся макроскопическими параметрами: объемом, температурой, давлением и др. Для этого… … Большой Энциклопедический словарь

    термодинамическая система - термодинамическая система; система Совокупность тел, могущих энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом … Политехнический терминологический толковый словарь

    ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА - совокупность физ. тел, которые могут обмениваться между собой и с др. телами (внешней средой) энергией и веществом. Т. с. является любая система, состоящая из очень большого числа молекул, атомов, электронов и др. частиц, имеющих множество… … Большая политехническая энциклопедия

    термодинамическая система - Тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г … Справочник технического переводчика

    термодинамическая система - – произвольно выбранная часть пространства, содержащая одно или несколько веществ и отделенная от внешней среды реальной или условной оболочкой. Общая химия: учебник / А. В. Жолнин … Химические термины

    термодинамическая система - макроскопическое тело, отделенное от окружающей среды реальными или воображаемыми границами, которое можно охарактеризовать термодинамическими параметрами: объемом, температурой, давлением и др. Различают изолированные,… … Энциклопедический словарь по металлургии

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными), которое можно характеризовать макроскопическими параметрами: объёмом, температурой, давлением и др. Для… … Энциклопедический словарь

    Термодинамика … Википедия

    термодинамическая система - termodinaminė sistema statusas T sritis chemija apibrėžtis Kūnas (kūnų visuma), kurį nuo aplinkos skiria reali ar įsivaizduojama riba. atitikmenys: angl. thermodynamic system rus. термодинамическая система … Chemijos terminų aiškinamasis žodynas

    термодинамическая система - termodinaminė sistema statusas T sritis fizika atitikmenys: angl. thermodynamic system vok. thermodynamisches System, n rus. термодинамическая система, f pranc. système thermodynamique, m … Fizikos terminų žodynas



Поделиться