§29. Реализация наследственной информации. Глава I реализация генетической информации. Генетический код

Сложившиеся представления о внутриклеточном переносе генетической информации по схеме ДНК->РНК->белок, предложенной Ф. Криком, принято называть «центральной догмой » молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как общий перенос, известна и другая форма реализации генетической информации (специализированный перенос), обнаруженная при инфицировании клетки РНК-co держащими вирусами. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы, кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно, специализированный перенос генетической информации осуществляется по схеме РНК-»ДНК-»РНК-»белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК на матрице ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности матричной нити ДНК (5’, переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5’->3’ на основе комплементарного соответствия дезоксирибонуклеотидов цепи ДНК рибонуклеотидам РНК (А - У, Г - Ц, Т - А, Ц - Г). Вторая цепь ДНК, комплементарная матричной, называется кодирующей («-»-цепь).

В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы клеточной РНК. Единица транскрипции получила название «транскриптон». На рисунке 1.4 представлена структура прокариотического транскриптона.

Рис. 1.4.

Процесс транскрипции катализируется РНК-полимеразой, представляющей собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций.

Транскрипцию принято подразделять на три основных стадии: инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса). Рассмотрим данный процесс на примере прокариотической клетки.

Инициация транскрипции осуществляется РНК-полимеразой в состоянии холофермента, т.е. в присутствии всех субъединиц (двух а, формирующих каркас РНК-полимеразы; р, катализирующей полимеризацию РНК; Р’, обеспечивающей неспецифическое связывание с ДНК; со, участвующей в сборке фермента и защищающей его от разрушения; о, распознающей промотор и связывающейся с промотором). Фермент связывается с участком ДНК, называемым промотором (рис. 1.5) и расположенным перед стартовой точкой, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции. Промоторы большинства генов прокариот имеют в своем составе универсальную последовательность 5’-ТАТААТ-3’ (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка десяти нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5’-ТТГАЦА-3’) обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы одно- нитевого 3’-5’-фрагмента ДНК. После синтеза короткого (длиной до десяти нуклеотидов) фрагмента РНК, G-субъединица отсоединяется, и РНК-полимераза переходит в состояние кор-фермента.


Рис. 1.5.

На этапе элонгации кор-фермент продвигается по ДНК-матрице, расплетая ее и наращивая цепь РНК в направлении 5’->3’. Вслед за продвижением РНК-полимеразы восстанавливается исходная вторичная структура ДНК. Процесс продолжается вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, на которой оканчивается синтез транскрипта, и он отсоединяется от матрицы. Существуют два основных способа терминации. При р-независимой терминации на синтезируемой РНК формируется шпилька, препятствующая дальнейшей работе РНК-полимеразы, и транскрипция прекращается, p-зависимая терминация осуществляется с участием р-белка, который присоединяется к определенным участкам синтезируемой РНК и с затратой энергии АТФ способствует диссоциации гибрида РНК с матричной нитью ДНК. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. Вместе с тем у прокариот возможен синтез полигенной молекулы мРНК, которая кодирует синтез не одного, а двух и большего числа полипептидных цепочек. В этом случае происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Однако полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

В отличие от прокариот, в клетках которых имеется РНК-поли- мераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот обнаружены ядерные РНК-полимеразы трех типов (I, II, III), а также РНК-полимеразы клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК (5,8S, 18S, 28S), РНК-полимераза II обеспечивает синтез мРНК, мяРНК и микроРНК, а РНК-полимераза III осуществляет синтез тРНК и 5S рРНК.

Разные типы РНК-полимераз инициируют транскрипцию с разных промоторов. Так, промотор для РНК-полимеразы II (рис. 1.6) содержит универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-моти- вы). При этом та или иная промоторная область может включать либо одну из указанных последовательностей, либо комбинацию двух или трех таких последовательностей. Также для инициации транскрипции эукариотические РНК-полимеразы нуждаются в белках - факторах транскрипции.


Рис. 1.6.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. На рисунке 1.7 представлена структура эукариотического транскриптона. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула РНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).


Рис. 1.7.

Процессинг мРНК у эукариот включает три этапа: кэпирование, полиаденилирование и сплайсинг. Модификация 5’-конца, называемая копированием, представляет собой присоединение к 5’-концу транскрипта гуанозинтрифосфата (ГТФ) необычной 5’-5’- связью. Реакция катализируется ферментом гуанилилтрансферазой. Затем происходит метилирование присоединенного гуанина и первых нуклеотидов транскрипта. Функциями «кэпа» (от англ, cap - колпачок, шапочка), вероятно, являются защита 5’-конца мРНК от ферментативной деградации, взаимодействие с рибосомой при инициации трансляции и транспорт мРНК из ядра. Модификация З’-конца (по- лиаденилирование) - это присоединение к З’-концу РНК-транскрип- та от 100 до 300 остатков адениловой кислоты. Процесс катализируется ферментом polyA-полимеразой. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на З’-конце мРНК сигнальной последовательности ААУААА. Предполагается, что полиадениловый «хвост» обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды. Третий этап процессинга - сплайсинг состоит в ферментативном разрезании первичного транскрипта с последующим удалением его интронных участков и воссоединением экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В сплайсинге принимают участие короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и первичного транскрипта способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания нитронов из гяРНК.

Следует отметить, что у эукариот процессингу подвергается большинство типов РНК, в то время как у прокариот мРНК процессингу не подвергается, и трансляция синтезируемой молекулы мРНК может начаться до завершения транскрипции.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5’ -> 3’). В клетках прокариот генетический материал (ДНК) находится в цитоплазме, что определяет сопряженность процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5’-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции и трансляции разделены в пространстве и во времени в связи с процессингом молекул РНК и необходимостью их последующей транспортировки из ядра в цитоплазму, где будет осуществляться синтез полипептида.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основных стадии: инициацию, элонгацию и терминацию.

Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК и белков (рис. 1.8). В составе рибосомы имеются две структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т.е. по коэффициенту седиментации (величине S). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).


Рис. 1.8.

Рибосомы прокариот состоят из большой и малой субъединиц с величинами 50S и 30S соответственно, тогда как у эукариот эти субъединицы крупнее (60S и 40S). Поскольку процесс трансляции более детально был исследован у бактерий, то и здесь мы его рассмотрим на примере прокариот. Как видно из рис. 1.8, в рибосоме содержатся несколько активных центров: A-участок (аминоацильный), P-участок (пептидильный), Е-участок (для выхода пустой тРНК) и участок связывания мРНК.

В процесс трансляции вовлечены также молекулы тРНК, функции которых состоят в участии в транспорте аминокислот из цитозоля к рибосомам и в распознавании кодона мРНК. Молекула тРНК, имеющая вторичную структуру в форме «клеверного листа», содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном молекулы мРНК, и акцепторный участок (на З’-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.3). Каждая аминокислота, участвующая в процессе трансляции, прежде чем переместиться к рибосоме, должна присоединиться к определенной тРНК с помощью соответствующего варианта фермента аминоацил-тРНК-синтетазы с использованием энергии молекул АТФ. Образование комплекса аминоацил-тРНК проходит в два этапа.

  • 1. Активация аминокислоты: Аминокислота + АТФ -> аминоа- цил-АМФ + РР.
  • 2. Присоединение аминокислоты к тРНК: Аминоацил-АМФ + + тРНК -> аминоацил-тРНК + АМФ.

Инициация трансляции у прокариот сопровождается диссоциацией рибосомы на две субъединицы. Затем 5-8 нуклеотидная последовательность, расположенная на 5’-конце молекулы мРНК (последовательность Шайна - Далъгарно) связывается с определенной областью малой субъединицы рибосомы таким образом, что в P-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы. Функциональная особенность такого P-участка во время инициации состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий - формилметионин. Поскольку синтез полипептида всегда начинается с N-конца и идет в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот - с N-метионина. Однако в дальнейшем эти аминокислоты, как правило, ферментативно отщепляются во время процессинга белковой молекулы. После образования инициирующего комплекса в «недостроенном» P-участке становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к «достраиванию» Р-участка и А-участка.

Процесс элонгации начинается с доставки следующей аминоацил-тРНК в A-участок рибосомы и присоединения на основе принципа комплементарности ее антикодона к соответствующему кодону мРНК, находящемуся в этом участке. Затем образуется пептидная связь между инициирующей (первой в цепочке) и последующей (второй) аминокислотами, после чего происходит перемещение рибосомы на один кодон мРНК в направлении 5’ -» 3’, что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК) и от инициирующей аминокислоты и выходом ее в цитоплазму через Е-участок.

При этом вторая по счету аминоацил-тРНК передвигается из А-участ- ка в P-участок, а освободившийся A-участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы «триплетными шагами» по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

И инициация, и элонгация трансляции осуществляются с участием вспомогательных белковых факторов. На сегодняшний день у прокариот описано по три таких фактора для каждого из этапов синтеза белка.

Терминация трансляции связана с вхождением одного из трех известных стоп-кодонов мРНК (УАА, УАГ, УГА) в A-участок рибосомы. Поскольку эти кодоны не несут информации о какой-либо аминокислоте, но узнаются соответствующими факторами терминации, процесс синтеза полипептида прекращается, и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5’-ко- нец мРНК может вступать в контакт со следующей рибосомой, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом, в результате чего формируется структура, называемая полисомой и представляющая собой несколько рибосом, одновременно транслирующих одну молекулу мРНК.

Механизм синтеза полипептида в эукариотической клетке принципиально схож с таковым у прокариот. Однако отличаются вовлеченные в процесс белковые факторы.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы. На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной струк- зв туры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно привести молекулу гемоглобина человека, состоящую из двух а-цепочек и двух (3-цепочек, которые формируют стабильную тетрамерную структуру. Каждая из глобино- вых цепочек содержит также молекулу гема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

ЗАДАНИЯ И ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Фрагмент кодирующей цепи ДНК имеет следующую нуклеотидную последовательность: 5’-ГАТТЦТГАЦТЦАТТГЦАГ-3’

Определите ориентацию и нуклеотидную последовательность мРНК, синтезируемой на указанном фрагменте ДНК, и аминокислотную последовательность кодируемого ею полипептида.

  • 2. Можно ли однозначно определить нуклеотидную последовательность мРНК и комплементарной ей нити ДНК, если известна аминокислотная последовательность кодируемого ими полипептида? Дайте обоснование своего ответа.
  • 3. Запишите все варианты фрагментов мРНК, которые могут кодировать следующий фрагмент полипептида: Фен - Мет - Цис.
  • 4. Какие аминокислоты могут транспортировать к рибосомам тРНК с антикодонами: АУГ, ААА, ГУЦ, ГЦУ, ЦГА, ЦУЦ, УАА, УУЦ?
  • 5. Как можно объяснить то обстоятельство, что размеры нуклеотидной последовательности структурного гена (3-глобина (1380 пар нуклеотидов) значительно превышают величину, необходимую для кодирования соответствующего полипептида, состоящего из 146 аминокислотных остатков?

Вопрос 1. Вспомните полное определение по­нятия «жизнь».

В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого явля­ется постоянный обмен веществ с окружаю­щей их внешней природой, причем с прекра­щением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классиче­ское определение жизни дополнено представ­лением об исключительной значимости нукле­иновых кислот — молекул, которые содержат генетическую информацию, позволяющую ор­ганизмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определе­ний: «Живые тела, существующие на Земле, представляют собой открытые, саморегули­рующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нук­леиновых кислот». При этом понятие «откры­тая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выде­ление); понятие «саморегуляция» — способ­ность к поддержанию постоянства химическо­го состава, структуры и свойств. Важным ус­ловием успешной саморегуляции является раздражимость — способность организма ре­агировать на информацию, поступающую из внешнего мира.

Вопрос 2. Назовите основные свойства генети­ческого кода и поясните их значение.

Можно выделить семь основных свойств ге­нетического кода.

Триплетность. Три стоящих подряд нук­леотида кодируют одну аминокислоту.

Однозначность. Один триплет не может кодировать более одной аминокислоты.

Избыточность. Одна аминокислота мо­жет быть кодирована более чем одним трипле­том.

Непрерывность. Между триплетами не существует «знаков препинания». Если «рам­ку считывания» сдвинуть на один нуклеотид, то весь код будет расшифрован неверно. В ка­честве примера приведем предложение, со­стоящее из трехбуквенных слов: жил был кот кот был сер. Теперь сдвинем «рамку считы­вания» на одну букву: илб ылк отк отб ылс ер.

Генетический код является неперекрывающимся. Любой нуклеотид может входить в состав только одного триплета.

Полярность. Существуют триплеты, оп­ределяющие начало и конец отдельных генов.

Универсальность. У всех живых организ­мов один и тот же триплет кодирует одну и ту же аминокислоту.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поко­ление и из ядра в цитоплазму, к месту синтеза белка?

При передаче наследственной информации из поколения в поколение молекулы ДНК уд­ваиваются в процессе дупликации. Каждая до­черняя клетка получает одну из двух идентич­ных молекул ДНК. При бесполом размноже­нии генотип дочернего организма идентичен материнскому. При половом размножении ор­ганизм потомка получает собственный дипло­идный набор хромосом, собранный из гапло­идного материнского и гаплоидного отцовско­го наборов.

При передаче наследственной информации из ядра в цитоплазму ключевым процессом яв­ляется транскрипция — синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фраг­мента ДНК — гена и содержит информацию о строении определенного белка. Такая моле­кула иРНК является посредником между хра­нилищем генетической информации — ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как мат­рицу («инструкцию») для синтеза белка в про­цессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?

Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъеди­ниц рибосом происходят в особых участках яд- pa — ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Вопрос 5. Расскажите, где происходит синтез белка и как он осуществляется.

Синтез белка происходит в цитоплазме и осуществляется с помощью специализирован­ных органоидов — рибосом. Молекула иРНК соединяется с рибосомой тем концом, с кото­рого должен начаться синтез белка. Амино­кислоты, необходимые для синтеза белковой цепи, доставляются молекулами транспорт­ных РНК (тРНК). Каждая тРНК может пере­носить только одну из 20 аминокислот (напри­мер, только аланин). Какую конкретно амино­кислоту переносит тРНК, определяет триплет нуклеотидов, расположенный на верхушке центральной петли тРНК, — антикодон.

Если антикодон окажется комплементарен триплету нуклеотидов иРНК, находящемуся в данный момент в контакте с рибосомой, про­изойдет временное связывание тРНК с иРНК, и аминокислота будет включена в белковую цепь.

На следующем этапе освободившаяся тРНК уйдет в цитоплазму, а рибосома сделает «шаг» и сдвинется к следующему триплету иРНК. Затем к этому триплету подойдет тРНК с соответствующим антикодоном и доставит очеред­ную аминокислоту, которая будет присоедине­на к растущему белку.

Геном эукариот организован сложнее, чем у прокариот. Для него характерен хромосомный уровень организации. В хромосомах ДНК находится в окружении белков. В геноме эукариот имеется много избыточной ДНК. В генетическом материале эукариот находятся неинформативные учас­тки – интроны , которые между между информативными - экзонами . Лнтроннс-экзонная организация генов у эукариот опреде­ляет необходимость преобразования первичного транскрилта (пре-информационной РНК"- продукта транскрипции) в зрелую и-РНК. Она долина быть освобождена от неинформативных участков и защи­щена против разрушающего воздействия ферментов цитоплазмы.

Кроме того, у эукариот появляется ядерная мембрана, кото­рая чространственно разобщаем место хранения генетической ин­формации (хромосомы, находящиеся в ядре) и место синтеза пеп­тидной цепи (рибосомы, находящиеся в цитоплазме). Иными словами, у эукариот процессе транскрипции и траслятши оказываются разоб­щенными как пространственно (ядерной обо.. 1кой), так и во време­ни (процессами созревания и-РНК).

Таким образом в ходе реализации наследственной информации" у эукариот могло выделить следующие этапы:

а) транскрипция

б) посттранскрипционные процессы (процесскнг)

в) трансляция

г) посттрансляционные процессы. <*

"а" и "б" протекают в ядре, "в" и "г" протекают в цитоплазме.

Транскрипция - процесс.переписывания информации, зашифрованной в молекуле дНК на молекулу и-РНК - осуществляется при участии фер­мента РНК-полимеразы. Этот фермент катализирует оборку И--РИК в направлении от 5" к 3* концу. Транскрипция осуществляется в со­ответствии с принципами комплементарности и антилараллеяькости. Вот почему она мо&ет происходить на одной из двух полпнуклеотидных цепей дНК, а именно, на той, которая начинается с З г конца, с"; а цепь называется кодогенной.

транскрипция иРНК

кодогенная (матричная)цепь ДНК

структурная часть гена

В участке у молекулу аНК, соответствущем отдельному гену, перед структурной часть©, в которой зашифрована последовательнооть "аминоквслот. в--пептиде, осязательно располагается последователь-:юсть нуклеотидов, узнаваемая РПК-полимеразой. Такая последова­тельность называется промотором .



РНК-пслимераза находит промотор, взаимодействует с ним и после зтого, двигаясь вдоль молекулы дКК, обеспечивает посте­пенную сборку молекулы и-РНК в соответствии с принципами комп-лементарности и антипараллельности. В конце структурной части гена расположен участок с особой последовательностью нуклео­тидов -»те-рмилатор » Он обязательно включает один из нонсенс-триплетов ^.нв кодирующих аминокислоты.

В результате транскрипции синтезируется молекула пре-ин-формационной РНК.

Посттраяскршплонные пропеосы (птюцессинг ) - это превращения, происходящие с первичным траыскриптом, направленные на образо­вание зрелой, стабилизированной и-РНК, способной выполнять функцию матрицы при тг^сяяции, и защищенной от рагрушащвго воздействия специфических ферментов цитоплазмы.

Основные стадии щхщессинта :

а) отщепление концевых участков первичного транскрипт^:

б) формирование на 5" конце колпачка, состоящего из особой пос­ледовательности нуклеотидов;

в) формирование на 3* конце полиадениловой последовательности нуклеотидов А А А А ;

г) метилирование некоторых внутренних азотистых оснований в транскрипте, стабилизирующее молекулу РНК;

д) вырезание неинформативных участков, соответствующих интронам дНК и сшивание (сплайсинг) участков, соответствующих экзокам

В результате процессинга у эук*>риот образуется зрелая и-РНК, ха­рактеризующаяся следующими особенностями строения:

Колпачок - особая последовательность нуклеотидов с метили­рованными основаниями, которая обеспечивает узнавание малых субъедгошц рибосом.

Лидер - вводная последовательность нуклеотидов, комплемен­тарная последовательности в молекуле р-РНК малой субъединиц:; рибосомы, которая обеопечивает прикрепление и-РЙК к малой субъединице.

Стартовый кодон - триплет нуклеотидов, кодирующий в боль­шинстве случаев аминокислоту формилметионин (АУЛ.

Кодирующая часть - последовательность кодонов, шифрутщих определенную последовательность аминокислот в соответствующей пептидной цепочке.

Трейлер - концевая часть молекулы и-РНК, включающая нок-сенс-кодон и поли-А последовательность.

Трансляция - процесс сборки пептидной цепи, происходящий в ци­топлазме на рибосомах на основании программы, содержащейся в и-РНК.

8 467k 27 *

Основные сазн тргнслятзгл : инициация

элонгация

терминация Инициация трансляции предполагает ел едущие события:

а) с помогая колпачка и-РНК находит в цитоплазме малую субъеда-

НЕПУ рибОСОМЫ,

б) с помощью лкдерной последовательности устанавливается связь „ с комплементарным участком определенно! 5 фракции р-РНК и

и-РНК прикрепляется к \:алой субъеднннце, ») к стартовому кодону (АУТ) присоединяется т-РНК, несущая

формилиетгокин, р) малая субъедикица ассоциируется с большой субъединицей,в «й

ноацильном центре (АЦ) которой располагается формилметшнин.

Таким образом фаза инициации завершается формированием комп­лекса и-РНК и рибосомы и подстановкой начальной для всех пеп­тидных цепей аминокислоты - формилметионина.

Раза элонгации , т.е. нарастание пептидной цепи, осуществляет­ся путем постепенной подстановки аминокислот в соответствии с очередным ко доном и-РНК, который встает против аминоацильного центра.

К этому кодону присоединяется соответствущая т-РНК, имещая комплементарный ему антикодон. Она несет определенную аминокислоту, которая располагается в аминоадкльном центре (АЦ), Т-РНК, соединенная с предыдущим ко доном, оказывается в пеп-тидильяом центре (ГЩ), где располагает свою аминокислоту (це­почку аминокислот). Между двумя аминокислотами, расположенны-ми в пептидильноы и аминоадкльном центре, при участии имею­щихся здесь ферментов возникает пептидная связь -с.-//- После установления пептидной

пептидная связь связи предыдущая т-РНК отделяет­ся от своей аминокислоты и своего кодона и уходит в цитоплаз­му» а последующая т-РНК, нагруженная цепочкой аминокислот, пе­реходит в ВД, заставляя и-РНК перемещаться вдоль рибосомы и ус­танавливать новый кодон против АЦ.

После прохождения через рибосому всей кодирующей части и-РНК на рибосоме собирается пептидная цепь с определенной последователь­ностью аминокислот.

Фаза термикацид наступает, когда в контакт с рибосомой приходит концевой участок и-РНК, который включает нонсенс-триплет, не ко-дируший никакой аминокислоты. На этом сборка пептидной цепи заканчивается.По мере освобождения 5» пептидная связь конца и-РЖ, колпачок может нахо­дить новые малые субъедини цы рибосом и пу f ,ecc трансляции мо­жет повторно осуществляться на новых рибосомах. Комплекс рибо­сом, находящихся в контакте с одной молекулой и-РНК и синтези­рующих одинаковые пептидные цепи, называется полирибосомой (по-лисомой).

Посттрансляционные процессы

В ходе предыдущих этапов реализации наследственной инфор­мации обеспечивается синтез пептидной цепа, котбрая в боль­шинстве случаев начинается с аминокислоты формияметЕон.;с; и со­ответствует первичной структуре белковой молекулы. Последую­щие события заключаются в отщеплении форыилметионинс. в неко­торых случаях осуществляется моди^Ецировакие пептида после трансляции, формируется вторичная и третичная структура белка. Иногда для некоторых белков, характеризующихся четвертичной структурой, осуществляется объединение одинаковых,либо различ­ных лептидных цепей с образованием активно функционгрущего белка.

В зависимости от того, каковы функции белка (фермент, строительной материал, антитело и т.д.), он принимает участие в обеспечении морфо--функциональ1шх особенностей клетки (ojv^

ганжзма), т.е. в формировании определенных сложных признаков.

Это является завершающим этапом процесса реализации гене­тической информации.

3.5. Регуляция генной активности

Реализация наследственной информации в живых системах - это сложный процесс, требующий очень тонкой регуляции #*я того, что-"бы обеспечить в определенных клетках в -определенное время син­тез определенных белков а необходимом количестве.

Все клетки организма, возникая путем митоза, получают пол­ноценный набор генетической информации, образуемый при оплодот­ворении родительских гамет. Нес- ыотря на это, они отличаются по своим морфологическим, биохимическим и функциональным свойствам друг от друга. В основе этих различий лежит активное функциони­рование в разных клетках разных частей генома.

Большая часть генома в клетках opi-анизма находится в неак­тивном состоянии - репрессивном состоянии, и только приблизи­тельно 1055 генов ^репрессированы . т.е. активно транскрибируют­ся. Спектр транскрибируемых генов зависит от тканевой принад­лежности клетки, от периода ее жизнедеятельности и периода ин­дивидуального развития организма.

Регуляция активности генов может осуществляться на всех этапах реализации генетической информации, но наиболее экономи­чески выгодной является регуляция на стадии транскрипции.

Основная масса генов, активно функциснирующих в большинст­ве клеток организма на протяжении онтогенеза, - это гены, кото­рые обеспечивают синтез белков общего назначения (белки рибосом, хромосом, мембран я т.д.), т-ГЯК и р-РНК. Транскрибирование этих с т р ук т ур ных генов обеспечивается соединением РНК-полимеразы с их промоторами и не подчиняется каким-либо другим регулирую­щим воздействиям. Такие гены называются конститутивными , другая группа структурных генов, обеспечивающих синтез некоторых бел­ков-ферментов, в своем функционировании зависит от различных регулирующих факторов и называете п регулируемыми генами. Их ак­тивное функционирование, скорость и продолжительность транскри­бирования могут регулироваться как генетическими факторами, так ж факторами негенетической природы. - . Генетическими факторами регуляции тг*шскридцни генов явля-

ются гены - регуляторы и операторя г Гены-регуляторы определяют синтез ^.яков-регуляторов, способных в активном состоянии соеди­няться с оператором, включающим или выключающим транскрипцию структурных генов. В зависимости от свойств белка-регулятора раз­личают негативный и позитивный контроль транскрипции со стороны гена-регулятора. При негативном контроле белок-регулятор, соеди­няясь с оператором, прекращает (выключает) транскрипцию. Такой белок называется репрессором . При позитивном контроле белок-регу­лятор, соединяясь с оператором, включает транскрипцию. В таком случае продукт гена-регулятора называется апоиндуктором .

Таким образом наряду со структурными генами в геноме имеются ге­ны-регуляторы, которые, обеспечивая репрессию или дерепрессию с трук т ур ных генов, регулируют процессы синтеза в клетке.

Наряду о генетическими факторами в регуляции экспрессии ге­нов важная роль принадлежит факторам негенетической природы - эф­фекторам . К ним относятся вещества небелковой природы, расщепляе­мые или синтезируемые в клетке при участии разд-^ых ферментов.

В аавксжмостн от того, как эффектор воздействует на активность генов, различают индукторы ,включапзие транскрипцию генов, и ко-репрессоры . выключающие ее. действие эффектора заключается в его взаимодействии с белком-регулятором, при котором он либо акти­вируется и может соединяться с оператором, либо инактиви 1: ? этся в теряет способность соединяться с оператором.

Таким образом экспрессия генов является результатом регу­лирующего воздействия на процессы транскрипции как со стороны самсго генома (гены - регу, тторы и операторы), так и со стороны факторов вегеяетической природы.

Регуляция транскрипции у прокариот

Езучениб регуляции экспрессии генов на стадии транскрипции у прокариот привело в созданию в 1961 г. модели оперона (1акоб и Моно).

Оперся - это тесно связанная последовательность ст рук т ур ных ге­нов, определяющих синтез группы ферментов д*." ,<акой-либо одной цепи биохимических реакций и регулирующаяся как едино„ целое.

Модель оперона структурные гены

Особенностью прокариот является транскрибирование и-РНК со всех структурных генов оперона. Такал полицистронная и-РНК в даль­нейшем разрезается на фрагменты, соответствующие матрицам для синтеза отдельных ферментов. Цепи структурных генов оперона всегда предшествует промотор, узнаваемый РНК-полимеразой. 7 конститутивных гонов этого достаточно для осуществления транс­крипции. У регулируемых генов между промотором и структурнши генами располагается оператор - последовательность нуклеотидов, которая узнается белком-регулятором, находящимся в активном состоянии. Пример функциовдрования, актозного оперона 6..Сое/

При отсутствии в среде лактозы активнг" репрессор, взаимо­действуя с оператором, репрессирует гены ABC - транскрипции нет. Появление в среде лактозы инактивирует репрессор, он не соеди­няется с оператором, и осуществляется транскрипция генов ABC,

отвечающих за синтез ферментов, которые расщепляют лактозу.

Пример негативного контроля функции лактозного оперона у E.coli

Уменьшение содержания лактозы в результате ее ферментативного расщепления приводит к соединению активного репрессора с опера­тором и выключению транскриЕции генов АЗС. Особенности регуляции транскрипции у эукариот

°У эукариот оперонная организация генов не установлена. Ге­ны, определяющие синтез "ферментов, кателизиружих разные звенья в цепи биохимических реакций, могут быть рассеяны в геноме, и, возможно, не имеют/как у прокариот, един^ регулирующей систе­мы (г? -^г.лятор, промотор, оператор). Ь настоящее время ме­ханизмы регуляции и координафя активности таких генов оконча­тельно не выяснены. Однако их функционирование несомненно под­чиняется регуляторным воздействиям как внутри клетки (гены-ре­гуляторы), так и на уровне организма (гормона).

Помимо регуляции экспрессии генов на стадии тралс:ср:гп::ии, она может осуществляться и при процессинге (обсуждается роль нитронов) и в ходе трансляции и поеттрасляционнылг модификаций белков.

Несмотря на то, что регуляция на поздних этапах реализа­ции наследственной информации экономически менее выгодна клет­кам, она обеспечивает наиболее быстрый ответ на воздействие регулирующих факторов. Например прекращение трансляки/ пептид­ной цепи сразу дает эффект по сравнению с прекращение".! транс­крипции соответствующего гена, так. как синтезированные молеку­лы и-РНК еще некоторое время после окончания транзхряппда обес­печивают в цитоплазме сборку пептидной цели. В совокупности все механизмы регуляции генной активности, обеспечивает произ­водство бглков в необходимом и достаточном в данный момент количестве.

Генетический код – способ записи в молекуле ДНК информации о количестве и порядке расположения аминокислот в белке.

Свойства:

    Триплетность - одна аминокислота кодируется тремя нуклеотидами

    Неперекрываемость - один и тот же нуклеотидне может входить одновременно в состав двух или более триплетов

    Однозначность (специфичность) - определённый кодон соответствует только одной

    Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусовдочеловека

    Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

14.Этапы реализации наследственной информации у прокариот и эукариот.

Репликация (синтез) ДНК

Синтез ДНК всегда начинается в строго определенных точках. Фермент топоизомераза раскручивает спираль. Геликаза разрушает водородные связи между цепями ДНК и образует вилку репликаций. SSB-белки препятствуют повторному формированию водородных связей.

РНК-праймаза синтезирует короткие фрагменты РНК (праймеры),которые присоединяются к 3"-концу.

ДНК-полимераза начинают от праймера и синтезирует дочернюю цепь(5" 3")-

Направление синтеза одной цепи ДНК совпадает с направлением движения вилки репликаций, поэтому данная цепь синтезируется непрерывно. Здесь синтез идет быстро. Направление синтеза второй цепи противоположно напралению вилки репликаций. Поэтому синтез данной цепи происходит в виде отдельных участков и идет медленно (фрагменты Оказаки).

Созревание ДНК: отщепляется РНК-праймеры, достраиваются недостающие нуклеотиды, фрагменты ДНК соединяются с помощью лигазы. Топоизомераза раскручивает спираль.

Этапы реализации наследственной информации (у эукариот)

1.Транскрипция

2.Процессинг

3.Трансялция

4.Посттрансляционные изменения

Трансляция – синтез молекулы РНК на основе молекулы ДНК. Ключевой фермент – РНК-полимераза.

РНК-полимераза должна распознать промотер и взаимодействовать с ним. Промотер –особый участок ДНК, который располагается перед информативной частью гена. Взаимодействие с промотором необходимо для активации РНК-полимеразы. После активации РНК-полимераза обеспечивает разрыв водородных связей между цепями ДНК.

Синтез РНК всегда происходит по определенной кодогенной цепи ДНК.На этой цепи промотер располагается ближе к 3"-концу.

Синтез РНК происходит по принципам комплементарности и антипараллельности.

РНК-полимераза достигает стоп-кодона (терминатор или терминирующей кодон).Это является сигналом для прекращения синтеза. Фермент инактивируется, отделяется от ДНК при этом освобождается вновь синтезированная молекула ДНК – первичный трансткрипт – про-РНК. Восстанавливается исходная структура ДНК.

Особенности строения гена эукариот:

У эукариотов гены включают в себя различные по функции участки

А) Интроны- фрагменты ДНК (гена), которые не кодируют аминокислоты в белке

Б)Экзоны – участки ДНК, которые кодируют аминокислоты в белке.

Прирывистая природа гена была обнаружена Роберцом и Шарпом (Ноб. Премия 1903г).

Количество интронов и экзонов в разных генах сильно отличается.

Процессинг (созревание)

Происходит созревание первичного транскрипта и образуется зрелая молекула матричной РНК, которая может участвовать в синтезе белка на рибосомах.

    На 5"- конце РНК формируется особый участок (структура) – КЭП или шапочка. КЭП обеспечивает взаимодействие с малой субъединицей рибосомы.

    На 3"-конце РНК присоединяется от 100 до 200 молекул нуклеотидов, несущих аденин (полиА). При синтезе белка эти нуклеотиды постепенно отщепляется, разрушение полиА является сигналом для разрушения молекул РНК.

    К некоторым нуклеотидам РНК присоединяется группа CH 3 – метилирование. Это увеличивает устойчивость ДНК к действию ферментов цитоплазмы.

    Сплайсинг – происходит вырезание интронов и сшивание между собой экзонов. Фермент рестриктаза удаляет, лигаза- сшивает)

Зрелая матричная РНК включает в себя:

Лидер обеспечивает связывание матричной РНК с субъединицей рибосомы.

СК – стартовый кодон – одинаковый у всех матричных РНК, кодирует аминокислоту

Кодирующий участок – кодирует аминокислоты в белке.

Стоп-кодон – сигнал о прекращаемся синтезе белка.

Во время процессинга происходит жесткий отбор в цитоплазму из ядра выходит около 10% молекул от числа первичных транскриптов.

Альтернативный сплайсинг

У человека имеется 25-30 тысяч генов.

Однако у человека выделено около 100 тысяч белков.

Альтернативный сплайсинг – это ситуация, при которой в клетках разных тканей один и тот же ген обеспечивает синтез одинаковых молекул проРНК. В разных клетках по разному определяется количество и границы между экзонами и интронами. В результате из одинаковых первичных транскриптов получаются различные мРНК и синтезируются разные белки.

Альтернативный сплайсинг доказан примерно для 50% генов человека.

Трансляция – это процесс сборки пептидной цепи на рибосомах согласно информации, заложенной в иРНК.

1.Инициация (начало)

2.Элонгация (удлинение молекулы)

3.Терминация (конец)

Инициация.

Молекула матрРНК с помощью КЭПа контактирует с малой субъединицей рибосомы. С помощью лидера РНК связывается с субъединицей рибосомы. К стартовому кодону присоединяется транспРНК, которая несет транспортную кислоту метионин. Затем присоединяется большая субъединица рибосомы. В целой рибосоме формируется два активных центра: аминоацильный и пептидильный. Аминоакцильный свободен, а пептидильный занят тРНК с метионином.

Элонгация.

В аминоакцильный цент входит мРНК, антикодон которой соответствует кодируещему.

После этого рибосома сдвигается относительно мРНК на 1 кодон.При этом аминоакцильный центр освобождается. В пептидильном центре находится мРНК, соединяется с второй аминокислотой. Процесс циклически повторяется.

3.Терминация

В аминоацильный центр поступает стоп-кодон, который распознается специальным белком, это является сигналом для прекращения синтеза белка. Субъединицы рибосомы разъединяются, освобождая при этом мРНК и вновь синтезируется полипептид.

4.Пострансляционные изменения.

При трансляции образуется первичная структура полипептида.Этого недостаточно для выполнения функций белка, поэтому белок изменяется, что обеспечивает его активность.

Образуется:

А) вторичная структура (водородные связи)

Б)глобула – третичная структура (дисульфидные связи)

В) четвертичная структура – гемоглобин

Г)Гликозилирование – присоединение к белку остатков сахаров (антитела)

Д) расщепление большого полипептида на несколько фрагментов.

Различия в реализации наследственной информации прокариот и эукариот:

1.У прокариот отстутсвуют экзоны и интроны, поэтому отсутствуют этапы процессинга и сплайсинга.

2.У прокариот транскрипция и трансляция происходит одновременно, т.е. идет синтез РНК и уже начинается синтез ДНК.

3.У эукариот синтез различных видов РНК контролируется различными ферментами. У прокариот все типы РНК синтезируются одним ферментом

4.У эукариот каждый ген имеет свой собственный уникальный промотер, у прокариот один промотер может контролировать работу несколькихгенов.

5. Только у прокариот имеется система Оперона



Поделиться