Экраны электронно-лучевых трубок. Принцип работы электронно-лучевой трубки и ее применение

.
Электронно-лучевые трубки, действие которых основано на формировании и управлении по интенсивности и положению одним или более электронными пучками, классифицируют по назначению и способу управления электронным пучком. В зависимости от назначения ЭЛТ подразделяют на приемные, передающие, запоминающие и др. В качестве индикаторных приборов используют приемные трубки. По способу управления электронным пучком ЭЛТ подразделяют на трубки с электростатическим и магнитным управлением. В первых для управления пучком электронов применяют электрическое поле, а во вторых - магнитное.

Электронно-лучевые трубки с электростатическим управлением обеспечивают более высокие частотные свойства, поэтому их широко используют в качестве индикаторов электронных осциллографов. Рассмотрим работу электронно-лучевой трубки с электростатическим управлением, конструкция которой схематически показана на рисунке ниже.

Она представляет собой стеклянную колбу, в узкой части которой расположены электронный прожектор (ЭП) и отклоняющая система (ОС). В торцевой части колбы находится экран (Э), покрытый специальным составом - люминофором, способным светиться при бомбардировке электронным пучком. Электронный прожектор состоит из подогреваемого нитью накала (Н), катода (К), модулятора (М) и двух анодов (А, и А2).

Электроны, покинувшие катод, образуют электронное облако, которое под действием поля анодов движется в сторону экрана, формируясь в электронный пучок. Этот пучок проходит модулятор, выполненный в виде пологого цилиндра с отверстием и донной части. К модулятору прикладывается отрицательное относительно катода напряжение в несколько десятков вольт. Это напряжение создает тормозящее поле, предварительно фокусирующее электронный пучок и изменяющее яркость свечения экрана. Для получения требуемой энергии (скорости) электронного пучка на аноды подается положительное относительно катода напряжение: на анод A1 - порядка нескольких сотен, а на анод А2- нескольким тысяч вольт. Значение напряжения для анода А2 выбирают из условия установки фокуса второй электростатической линзы в плоскости экрана.

Отклоняющая система ЭЛТ состоит из двух пар взаимно перпендикулярных пластин, расположенных симметрично относительно оси колбы. Напряжение, прикладываемое к пластинам, искривляет траекторию электронного пучка, вызывая тем самым откло­нение светового пятна на экране. Значение этого отклонения прямо пропорционально напряжению на пластинах ОС и обратно пропорционально напряжению Uа на втором аноде.

(рисунок ниже), как и ЭЛТ с электростатическим управлением, включает в себя ЭП и ОС. Конструкции ЭП обеих трубок аналогичны.

Предварительная фокусировка электронного пучка в трубке с магнитным управлением также осуществляется двумя электростатическими линзами, образованными соответственно электрическими полями между модулятором и первым анодом и между первым и вторым анодами. В функции первого анода, называемого иногда ускоряющим электродом, дополнительно входит экранировка модулятора от второго анода, что почти полностью исключает зависимость яркости свечения экрана от напряжения второго анода.

Внутри ЭЛТ расположен еще один электрод, называемый аквадагом (АК). Аквадаг электрически соединен с вторым анодом. Основная фокусировка электронного пучка производится неоднородным магнитным полем фокусирующей катушки (ФК), конструктивно расположенной на горловине колбы ЭЛТ. Это поле, возникающее при протекании по ФК постоянного тока, придает электронам вращательное движение вокруг оси пучка, фокусируя его в плоскости экрана.

Магнитная ОС содержит две пары последовательно включенных взаимно перпендикулярных обмоток, конструктивно выполненных в виде единого блока. Результирующее поле, создаваемое этими обмотками, заставляет электроны двигаться по окружности, радиус которой обратно пропорционален напряженности магнитного поля. Покидая поле, электроны пучка двигаются по касательной к исходной траектории, отклоняясь от геометрической оси колбы.

При этом отклонение электронного пучка в ЭЛТ с магнитным управлением меньше зависит от значения ускоряющего напряжения на аноде А2, чем отклонение пучка в ЭЛТ с электростатическим управлением. Поэтому при заданном значении напряжения на втором аноде ЭЛТ с магнитным управлением обеспечивает больший угол отклонения электронного пучка, чем ЭЛТ с электростатическим управлением, что позволяет значительно уменьшить ее размеры. Типовое значение максимального угла отклонения в ЭЛТ с магнитным управлением составляет 110°, а в ЭЛТ с электростатическим управлением - не превышает 30°.

Соответственно при заданных значениях отклонения электронного пучка ЭЛТ с магнитным управлением работает с большими значениями напряжения второго анода, чем ЭЛТ с электростатическим управлением, что позволяет повысить яркость получаемого изображения. К сказанному следует добавить, что ЭЛТ с магнитным управлением обеспечивает лучшую фокусировку электронного пучка, а следовательно, и лучшее качество изображения, что и предопределило их широкое распространение в качестве индикаторных устройств дисплеев ЭВМ. Рассмотренные ЭЛТ обеспечивают монохроматический режим отображения информации. В настоящее время все большее распространение находят ЭЛТ с цветным изображением.

(рисунок ниже) реализует принцип получения цветных образов как сумму изображений красного, зеленого и синего цветов.

Изменяя относительную яркость каждого из них, можно изменять цвет воспринимаемого изображения. Поэтому конструктивно ЭЛТ содержит три самостоятельных ЭП, пучки которых сфокусированы на некотором расстоянии от экрана. В плоскости пересечения лучей расположена цветоотделительная маска - тонкая металлическая пластина с большим числом отверстий, диаметр которых не превышает 0,25 мм. Экран цветной ЭЛТ неоднороден и состоит из множества люминесцирующих ячеек, число которых равно числу отверстий маски. Ячейка составлена из трех круглых элементов люминофора, светящихся красным, зеленым или синим цветом.

Например, цветной кинескоп с размером экрана по диагонали 59 см имеет маску с более чем полумиллионом отверстий, а общее число люминесцирующих элементов экрана превышает 1,5 млн. Пройдя через отверстия маски, электронные пучки расходятся. Расстояние между маской и экраном подобрано так, чтобы после прохождения отверстия маски электроны каждого пучка попадали на элементы экрана, люминесцирующие определенным цветом. Из-за малых размеров светящихся элементов экрана глаз человека уже на небольшом удалении не способен различать их и воспринимает суммарное свечение всех ячеек, интегральные цвета которых зависят от интенсивности электронного пучка каждого ЭП.

Если на модуляторы всех трех ЭП подать равные напряжения, то световые элементы экрана будут светиться одинаково и результирующий цвет будет восприниматься как белый. При синхронном изменении напряжении на модуляторах яркость белого цвета изменяется. Следовательно, подавая на модуляторы равные напряжения, можно получить все градации свечения экрана - от ярко-белого до черного. Таким образом, цветные кинескопы могут без искажений воспроизводить и черно-белое изображение.

Ю.Ф.Опадчий, Аналоговая и цифровая электроника, 2000 г.

Студент должен знать : структурную схему осциллографа; назначение основных блоков осциллографа; устройство и принцип действия электронно-лучевой трубки; принцип действия генератора развертки (пилообразного напряжения), сложение взаимно перпендикулярных колебаний.

Студент должен уметь : определять опытным путем цену деления по горизонтали и по вертикали, измерять величину постоянного напряжения, период, частоту и амплитуду переменного напряжения.

Краткая теория Структура осциллографа

Электронный осциллограф является универсальным прибором, позволяющим следить за быстропротекающими электрическими процессами (длительностью до 10 -12 с). С помощью осциллографа можно измерить напряжение, силу тока, промежутки времени, определять фазу и частоту переменного тока.

Т.к. в функционирующих нервах и мышцах живых организмов возникают разности потенциалов, то электронный осциллограф, или его модификации широко применяют в биологических и медицинских исследованиях работы различных органов, сердца, нервной системы, глаз, желудка и т.д.

Прибор можно использовать для наблюдения и измерения неэлектрических величин, если применять специальные первичные преобразователи.

В осциллографе нет движущихся механических частей (см. рис. 1), а происходит отклонение электронного пучка в электрическом или магнитном полях. Узкий пучок электронов, попадая на экран, покрытый специальным составом, вызывает его свечение в этой точке. При перемещении пучка электронов можно следить за ним по движению светящейся точки на экране.

Электронный луч «следит» за изменением изучаемого электрического поля не отставая от него, т.к. электронный луч является практически безинерционным.

Рис. 1. Рис. 2.

Структура электронно-лучевой трубки Катод и модулятор

В этом большое достоинство электронного осциллографа по сравнению с другими регистрирующими приборами.

Современный электронный осциллограф имеет следующие основные узлы: электронно-лучевая трубка (ЭЛТ), генератор развертки, усилители, блок питания.

Устройство и работа электронно-лучевой трубки

Рассмотрим устройство электронно-лучевой трубки с электростатической фокусировкой и электростатическим управлением электронным лучом.

ЭЛТ, схематически изображенная на рис. 1, представляет собой стеклянную колбу специальной формы, в которой создан высокий вакуум (порядка 10 -7 мм рт.ст.). Внутри колбы расположены электроды, выполняющие функцию электронной пушки для получения узкого пучка электронов; отклоняющие луч пластины и экран, покрытый слоем люминофора.

Электронная пушка состоит из катода 1, управляющего (модулирующего) электрода 2, дополнительного, экранирующего электрода 3 и первого и второго анодов 4, 5.

Подогревной катод 1 выполнен в виде небольшого никелевого цилиндра, внутри которого находится нить накала, имеет слой оксида на передней торцевой части с малой работой выхода электронов для получения электронов (рис. 2).

Катод находится внутри управляющего электрода или модулятора, представляющего собой металлический стакан с отверстием в торце, через которое могут проходить электроны. Управляющий электрод имеет отрицательный потенциал относительно катода и, изменяя величину этого потенциала, можно регулировать интенсивность потока электронов, проходящих через его отверстие и тем самым изменять яркость свечения экрана. Одновременно электрическое поле между катодом и модулятором фокусирует пучок электронов (рис. 2).

Экранирующий электрод 3 имеет потенциал немного выше потенциала катода и служит для облегчения выхода электронов, исключения взаимодействия электрических полей управляющего электрода 2 и первого анода 4.

Дополнительная фокусировка и ускорение электронов происходит электрическим полем между первым и вторым анодами, образующими электронную линзу. Аноды эти выполнены в виде цилиндров с диафрагмами внутри. На первый анод 4 подается положительный потенциал по отношению к катоду порядка сотен вольт, на второй 5 порядка тысячи вольт. Линии напряженности электрического поля между этими анодами представлены на рис.3.

Cтраница 1


Работа электронно-лучевой трубки основана на двух физических явлениях. Первое - это свечение некоторых веществ, называемых люминофорами, при их бомбардировке потоком электронов, причем свечение остается видимым в течение некоторого времени и после прекращения бомбардировки. Второе явление заключается во влиянии электрического поля на траекторию полета электронов, что позволяет разогнать пучок электронов до высокой скорости, сфокусировать его до очень тонкого луча и перемешать луч по полю экрана для получения на экране видимого следа.  

Работа электронно-лучевой трубки опирается на три физических явления.  


Для изучения принципа работы электронно-лучевых трубок с магнитным управлением необходимо предварительно ознакомиться с законом движения электрона в магнитном поле.  


Потенциал ускоряющего анода в процессе работы электронно-лучевой трубки обычно поддерживается неизменным.  


Итак, мой любезный Незнайкин, я должен объяснить тебе устройство и принципы работы электронно-лучевой трубки, так как она применяется в телевизионных передатчиках и приемниках.  

Большие успехи в технике высокого вакуума, достигнутые в последнее время, а именно разработка мощных вакуумных насосов и цельнометаллических конструкций для катодного возбуждения образцов (типа электронных микроскопов) в значительной степени устранили трудности, связанные с работой высоковакуумных разборных электронно-лучевых трубок. Смена образцов в таких конструкциях, снабженных смотровыми окнами для наблюдения катодолюминесценции, производится без нарушения вакуума во всей системе через специальные металлические дверцы. Вместе с промежуточной откачкой объема, занимаемого образцами, эта операция занимает не более нескольких минут.  


Сложное сочетание электродов - катода, сеток и анодов - образует своего рода электронную пушку или электронный прожектор, создающий узкий пучок быстро летящих заряженных частиц. Но работа электронно-лучевой трубки на этом не Кончается. Ведь надо еще, чтобы электронный луч двигался по экрану - по широкому дну лучевой трубки и одну за другой прочерчивал на нем строчки светящегося изображения. Для этого необходимо сообщить лучу два движения: горизонтальное, вдоль каждой строчки, и вертикальное, от одной строчки к другой.  

Основной задачей оконечного или выходного каскада видеоусилителя является управление работой трубки индикатора. Как уже указывалось, для управления работой электронно-лучевой трубки (кинескопов телевизионных приемников осциллографических, индикаторных) и других оконечных устройств требуются импульсные сигналы от 10 до 100 В.  

Ионный ток образуется также в газах: в неоновых лампах, газотронах и пр. В электронных лампах основной ток - электронный, но здесь могут параллельно существовать и ионные токи, потому что оставшиеся в колбе лампы атомы и молекулы газа могут ионизироваться в результате столкновения с электронами, летящими с большой скоростью. Например, работа электронно-лучевых трубок основана на использовании тонкого пучка электронов (электронного луча), но наряду с этим в трубках образуются и ионы.  

Электронно-лучевыми трубками называют электронные приборы, у которых электронный поток, выходящий из катода, фокусируется электрическим или магнитным полем в узкий пучок - электронный луч. По способу фокусировки и отклонения электронного луча электронно-лучевые трубки подразделяют на три типа: 1) с электростатическими фокусировкой и отклонением луча; 2) с электромагнитными фокусировкой и отклонением луча; 3) с фокусировкой электростатическим полем и отклонением луча магнитным полем. Рассмотрим принцип работы электронно-лучевой трубки первого типа.  

Электронно-лучевая трубка (ЭЛТ) является тем термоэлектронным прибором, который похоже, не собираются выводить из употребления в ближайшем будущем. ЭЛТ используется в осциллографе для наблюдения электрических сигналов и, конечно, в качестве кинескопа в телевизионном приемнике и монитора в компьютере и радиолокаторе.

ЭЛТ состоит из трех основных элементов: электронной пушки, являющейся источником электронного луча, отклоняющей луч системы, которая может быть электростатической или магнитной, и люминесцентного экрана, испускающего видимый свет в месте падения электронного луча. Все существенные черты ЭЛТ с электростатическим отклонением отражены на рис. 3.14.

Катод испускает электроны, и они летят в сторону первого анода A v на который подается положительное относительно катода напряжение в несколько тысяч вольт. Поток электронов регулируется сеткой, отрицательное напряжение на которой определяется требуемой яркостью. Электронный луч проносится сквозь отверстие в центре первого анода, а также сквозь второй анод, на котором действует немного большее положительное напряжение, чем на первом аноде.

Рис. 3.14. ЭЛТ с электростатическим отклонением. На упрощенной схеме, подключенной к ЭЛТ, показаны регуляторы яркости и фокуса.

Назначение двух анодов состоит в том, чтобы создать между ними электрическое поле с силовыми линиями, искривленными так, чтобы все электроны луча сходились в одном месте на экране. Разность потенциалов между анодами А 1 и Л 2 подбирается с помощью регулятора фокуса таким образом, чтобы получить на экране четко сфокусированное пятно. Эту конструкцию из двух анодов можно рассматривать как электронную линзу. Подобным образом можно создать магнитную линзу, приложив магнитное поле; в некоторых ЭЛТ фокусировка осуществляется именно так. С большим эффектом этот принцип используется также в электронном микроскопе, где может быть применена комбинация электронных линз, обеспечивающая очень большое увеличение с разрешающей способностью, в тысячу раз лучшей, чем у оптического микроскопа.

После анодов электронный луч в ЭЛТ проходит между отклоняющими пластинами, к которым можно прикладывать напряжения для отклонения луча в вертикальном направлении в случае пластин Y ив горизонтальном направлении в случае пластин X. После отклоняющей системы луч попадает на люминесцентный экран, то есть на поверхность, покрытую люминофором.

На первый взгляд, электронам некуда деваться после того, как они ударяются об экран, и можно подумать, что отрицательный заряд на нем будет расти. В действительности этого не происходит, так как энергии электронов в луче достаточно, чтобы вызвать «брызги» вторичных электронов из экрана. Эти вторичные электроны собираются затем проводящим покрытием на стенках трубки. На самом деле с экрана обычно уходит так много заряда, что на нем самом возникает положительный по отношению ко второму аноду потенциал в несколько вольт.

Электростатическое отклонение является стандартом для большинства осциллографов, но это неудобно в отношении больших ЭЛТ, используемых в телевидении. В этих трубках с их огромными экранами (до 900 мм по диагонали) для обеспечения желаемой яркости требуется разгонять электроны в луче до больших энергий (типичное напряжение высоковольтного

Рис. 3.15. Принцип действия магнитной отклоняющей системы, используемый в телевизионных трубках.

источника 25 кВ). Если бы в таких трубках с их очень большим углом отклонения (110°) применялась бы электростатическая система отклонения, то понадобились бы чрезмерно большие отклоняющие напряжения. Для таких приложений стандартом является магнитное отклонение. На рис. 3.15 показана типичная конструкция магнитной отклоняющей системы, где для создания отклоняющего поля используются пары катушек. Обратите внимание на то, что оси катушек перпендикулярны направлению, в котором осуществляется отклонение, в отличие от осевых линий пластин в электростатической отклоняющей системе, которые параллельны направлению отклонения. Это различие подчеркивает, что в электрическом и магнитном полях электроны ведут себя по-разному.


Федеральное агентство по образованию

Кузбасская государственная педагогическая академия

Кафедра автоматизации производственных процессов

Реферат

по радиотехнике

Тема: Осциллографическая электронно-лучевая трубка. Передающие телевизионные трубки

    Электронно-лучевые индикаторы

1.1 Основные параметры ЭЛТ

1.2 Осциллографические электронные трубки

II. Передающие телевизионные трубки

2.1 Передающие телевизионные трубки с накоплением зарядов

2.1.1 Иконоскоп

2.1.2 Супериконоскоп

2.1.3 Ортикон

2.1.4 Суперортикон

2.1.5 Видикон

Список используемой литературы

I . Электронно-лучевые индикаторы

Электронно-лучевым называют электронный электровакуумный прибор, в котором используется поток электронов, сконцентрированный в форме луча или пучка лучей.

Электронно-лучевые приборы, имеющие форму трубки, вытянутой в направлении луча, называют электронно-лучевыми трубками (ЭЛТ). Источником электронов в ЭЛТ подогревный катод. Эмитированные катодом электроны собираются в узкий луч электрическим или магнитным полем специальных электродов или катушек с током. Электронный луч фокусируется на экране, для изготовления которого внутреннюю сторону стеклянного баллона трубки покрывают люминофором – веществом, способным светиться при бомбардировке его электронами. Положением видимого сквозь стекло баллона пятна на экране можно управлять, отклоняя поток электронов путём воздействия на него электрического или магнитного поля специальных (отклоняющих) электродов или катушек с током. Если формирование электронного луча и управление им осуществляется с помощью электростатических полей, то такой прибор называют ЭЛТ с электростатическим управлением. Если для этих целей используют не только электростатические, но и магнитные поля, то прибор называют ЭЛТ с магнитным управлением.

Схематическое изображение электронно-лучевой трубки






Рис.1

На рис.1 схематически показано устройство ЭЛТ. Элементы трубки размещены в стеклянном баллоне, из которого откачан воздух до остаточного давления 1-10 мкПа. Кроме электронной пушки, включающей в себя катод 1, сетку 2 и ускоряющий электрод 3, в электронной лучевой трубке есть магнитная отклоняющая и фокусирующая система 5 и отклоняющие электроды 4, позволяющие направить пучок электронов в различные точки внутренней поверхности экрана 9, имеющего металлическую анодную сетку 8 с проводящим слоем люминофора. Напряжение на сетку анода с люминофором подается через высоковольтный ввод 7. Пучок электронов, падающих с большой скоростью на люминофор, вызывает его свечение, и на экране можно видеть светящееся изображение пучка электронов.

Современные фокусирующие системы обеспечивают диаметр светящегося пятна на экране менее 0,1 мм. Вся система электродов, формирующих электронный луч, крепится на держателях (траверсах) и образует единое устройство, называемое электронам прожектором. Для управления положением светящегося пятна на экране применяют две пары специальных электродов - отклоняющих пластин, расположенных взаимно перпендикулярно. Изменяя разность потенциалов между пластинами каждой пары, можно изменять положение электронного луча во взаимно перпендикулярных плоскостях благодаря воздействию электростатических полей отклоняющих пластин на электроны. Специальные генераторы в осциллографах и телевизорах формируют линейно изменяющееся напряжение, которое подаётся на отклоняющие электроды и создает развертку изображения по вертикали и горизонтали. В результате на экране получают двумерную картину изображения.

ЭЛТ с магнитным управлением содержит такой же электронный прожектор, как и ЭЛТ с электростатическим управлением, за исключением второго анода. Вместо него применяют короткую катушку (фокусирующую) с током, надеваемую на горловину трубки вблизи первого анода. Неоднородное магнитное поле фокусирующей катушки, воздействуя на электроны, выполняет роль второго анода в трубке с электростатической фокусировкой.

Отклоняющая система в трубке с магнитным управлением выполняется в виде двух пар отклоняющих катушек, также размещаемых на горловине трубки между фокусирующей катушкой и экраном. Магнитные поля двух пар катушек взаимно перпендикулярны, что позволяет управлять положением электронного луча при изменении тока в катушках. Магнитные отклоняющие системы используют в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана, в частности в телевизионных приемных трубках - кинескопах. Поскольку магнитная отклоняющая система размещается вне баллона ЭЛТ, ее удобно вращать вокруг оси ЭЛТ, меняя положение осей на экране, что важно в некоторых применениях, например в радиолокационных индикаторах. С другой стороны, магнитная отклоняющая система инерционнее электростатической и не позволяет перемещать луч с частотой более 10-20 кГц. Поэтому в осциллографах - приборах, предназначенных для наблюдения на экране ЭЛТ изменений электрических сигналов во времени,- применяют трубки с электростатическим управлением. Заметим, что существуют ЭЛТ с электростатической фокусировкой и магнитным отклонением.

1.1 Основные параметры ЭЛТ

Цвет свечения экрана может быть |различным в зависимости от состава люминофора. Чаще других используют экраны с белым, зеленым, синим, фиолетовым цветом свечения, однако имеются ЭЛТ с желтым, голубым, красным, оранжевым цветом.

Послесвечение - время, необходимое для спадания яркости свечения от номинальной до первоначальной после прекращения электронной бомбардировки экрана. Послесвечение делится на пять групп: от очень короткого (менее 10 -5 с) до очень длительного (более 16 с).

Разрешающая способность - ширина светящейся сфокусированной линии на экране или минимальный диаметр светящегося пятна.

Яркость свечения экрана - сила света, испускаемого 1 м 2 экрана в направлении, нормальном к его поверхности. Чувствительность к отклонению - отношение смещения пятна па экране к значению отклоняющего напряжения или напряженности магнитного поля.

Существуют разные виды ЭЛТ: осциллографические ЭЛТ, приёмные телевизионные трубки, передающие телевизионные трубки и проч. В своей работе я рассмотрю устройство и принцип действия осциллографической ЭЛТ и передающих телевизионных трубок.

1.2 Осциллографические электронно-лучевые трубки

Осциллографические трубки предназначены для получения изображения электрических сигналов на экране. Обычно это ЭЛТ с электростатическим управлением, в которых для наблюдения применяют зеленый цвет свечения экрана, а для фотографирования - голубой или синий. Для наблюдения быстропротекающих периодических процессов служат ЭЛТ с повышенной яркостью свечения и коротким послесвечением (не более 0,01 с). Медленные периодические и однократные быстро протекающие процессы лучше наблюдать на экранах ЭЛТ с длительным послесвечением (0,1-16 с). Осциллографические ЭЛТ выпускаются с круглым и прямоугольным экранами размерами от 14x14 до 254 мм в диаметре. Для одновременного наблюдения двух процессов и более выпускаются многолучевые ЭЛТ, в которых смонтированы два (или более) независимых электронных прожектора с соответствующими отклоняющими системами. Прожекторы смонтированы так, что и оси пересекаются в центре экрана.

II . Передающие телевизионные трубки

Передающие телевизионные трубки и системы преобразуют изображения объектов передачи в электрические сигналы. По способу преобразования изображений объектов передачи в электрические сигналы, передающие телевизионные трубки и системы подразделяются на трубки и системы мгновенного действия и трубки с накоплением зарядов.

В первом случае величина электрического сигнала определяется тем световым потоком, который в данный момент времени падает или на катод фотоэлемента, или на элементарный участок фотокатода передающей телевизионной трубки. Во втором случае происходит преобразование световой энергии в электрические заряды на накопительном элементе (мишени) передающей телевизионной трубки в течении периода кадровой развертки. Распределение электрических зарядов на мишени соответствует распределению света и тени по поверхности передаваемого объекта. Совокупность электрических зарядов на мишени называется потенциальным рельефом. Электронный луч периодически обегает все элементарные участки мишени и списывает потенциальный рельеф. При этом на нагрузочном сопротивлении выделяется напряжение полезного сигнала. Трубки второго типа, т.е. с накопленной световой энергией, имеют больший КПД, чем трубки первого типа, поэтому они широко применяются в телевидении. Именно поэтому подробней я рассмотрю устройство и виды трубок второго типа.

      Передающие телевизионные трубки с накоплением зарядов

        Иконоскоп

Важнейшей частью иконоскопа (рис.1а) является мозаика, которая состоит из тонкого листка слюда толщиной 0,025 мм. На одну сторону слюды нанесено большое число изолированных друг от друга мелких серебряных зёрен 4, окисленных и обработанных в парах цезия.



Поделиться