Регуляторные функции. Регуляторная функция биологических мембран

В функционировании человеческого организма стала ясна в начале XIX века. Учёные обозначили эти вещества греческим термином «протеины», от слова protos - «главный, первый».

Главная особенность этих химических соединений состоит в том, что они являются основой, которую организм использует для создания новых клеток. Другие их функции состоят в обеспечении регуляторных и обменных процессов; в выполнении транспортных функций (к примеру, белок гемоглобин, распространяющий кислород по всему организму с током крови); в формировании мышечных волокон; в управлении многими витальными функциями организма (ярким примером служит белок инсулин); в регулировании процесса пищеварения, энергетического обмена; в защите организма.

Химическая структура этих веществ определяется количеством аминокислот, из которых состоят белковые молекулы. Молекулы по размеру являются довольно крупными. Эти вещества являются высокомолекулярными органическими веществами и представляют собой цепочку аминокислот, связанных между собой пептидной связью. Аминокислотный состав протеинов обусловлен генетическим кодом. Множество вариаций соединения аминокислот дает разнообразие свойств протеиновых молекул. Как правило, они соединяются между собой и образуют сложные комплексы.

Классификация протеинов не доработана, поскольку учёными исследованы далеко не все белки. Роль многих из них продолжает быть загадкой для людей. Пока что протеины разделяют по биологической роли и по тому, какие именно аминокислоты входят в их состав. Для нашего питания ценен не сам белок, а составляющие его аминокислоты. Аминокислоты – это одна из разновидностей органических кислот. Их насчитывают более 100. Без них невозможно протекание метаболических процессов.

Организм не может полностью усваивать поступающие с пищей протеины. Большая их часть подвергается разрушению под действием кислых пищеварительных соков. Происходит распад белков до аминокислот. Организм «берёт» после распада нужные ему аминокислоты и конструирует из них нужные белки. При этом может происходить трансформация одних аминокислот в другие. Помимо трансформации, они также могут самостоятельно синтезироваться в организме.

Однако не все аминокислоты может производить наш организм. Те, которые не синтезируются, называются незаменимыми, потому что организм в них нуждается, а получить их может только извне. Незаменимые аминокислоты не могут быть заменены другими. К ним причисляют метионин, лизин, изолейцин, лейцин, фенилаланин, треонин, валин. К тому же есть другие аминокислоты, которые образуются исключительно из незаменимых фенилаланина и метионина. Поэтому качество питания обусловлено не количеством поступающих белков, а качественным их составом. Например, в картофеле, белокочанной капусте, свекле, капусте, в бобовых, в хлебе содержится большое количество триптофана, лизина, метионина.

Протекание белкового обмена в нашем организме зависит от достаточного количества нужных белков. Расщепление и трансформация одних веществ в другие происходит с выделением нужной организму энергии.

Как результат жизнедеятельности организма, постоянно происходит потеря части белков. Из поступающих извне белковых веществ теряется примерно 30 г в сутки. Поэтому с учётом потери, рацион должен содержать достаточное количество этих веществ, чтобы обеспечить работоспособность организма.

Потребление организмом белковых веществ зависит от разных факторов: выполнение трудной физической работы или нахождение в состоянии покоя; эмоциональное состояние. В сутки норма потребления белка составляет в совокупности не менее 50 грамм для взрослых людей (это примерно 0,8 грамм на каждый килограмм массы тела). Детям, в связи с интенсивным ростом и развитием, требуется больше протеинов – до 1,9 грамма на килограмм массы тела.

Тем не менее, даже большое количество употреблённых в пищу белковых веществ не гарантирует сбалансированное количество аминокислот в них. Поэтому рацион питания должен быть разнообразный, чтобы организм смог из него извлечь максимум пользы в виде разных аминокислот. Речь не идёт о том, что если сегодня в съеденной вами пище не оказалось триптофана, то уже завтра же вы заболеете. Нет, организм «умеет» в небольших количествах запасать полезные аминокислоты и расходовать в случае необходимости. Однако кумулятивная способность организма не слишком высока, поэтому запасы полезных веществ надо регулярно пополнять.

Если по личным убеждениям (вегетарианство) или по состоянию здоровья (проблемы с желудочно-кишечным трактом и диетическое питание) у вас присутствует ограничение в рационе, то вам необходимо получить консультацию врача-диетолога, чтобы скорректировать своё питание и восстановить баланс протеинов в организме.
При интенсивных спортивных занятиях организм нуждается в большом количестве протеинов. Специально для таких людей выпускается спортивное питание. Однако поступление протеинов должно соответствовать выполняемым физическим нагрузкам. Переизбыток этих веществ, вопреки расхожему мнению, вовсе не приведёт к резкому росту мышеч­ной массы.

Разнообразие функций протеинов охватывает едва ли не все протекающие в организме биохимические процессы. Их можно назвать биохимическими катализаторами.
Из протеинов образуется цитоскелет, который поддерживает форму клеток. Без протеинов невозможно успешное функционирование иммунной системы.

Отличным пищевым источником протеинов являются мясо, молоко, рыба, зерновые, бобовые, орехи. Менее богаты протеинами фрукты, ягоды и овощи.

Первый белок, который был изучен с целью определения его аминокислотной последовательности, это инсулин. За это достижение Ф. Сенгером была получена Нобелевская премия в 60 годах прошлого столетия. А учёные Д. Кендрю и М. Перуц в то же время смогли создать трёхмерную структуру миоглобина и гемоглобина с помощью методики дифракции рентген-лучей. За это они также были удостоены Нобелевской премии.

История изучения


Основоположником изучения протеинов является Антуан Франсуа де Фуркруа. Он выделил их в отдельный класс, после того как заметил их свойство денатурировать (или сворачиваться) под действием кислот или высокой температуры. Он исследовал фибрин (выделенный из крови), глютен (выделенный из пшеничного зерна) и альбумин (яичный белок).


Голландский учёный Г. Мульдер дополнил научные работы своего французского коллеги де Фуркруа и провел анализ белкового состава. На основании данного анализа он выдвинул гипотезу о том, что большая часть белковых молекул имеют похожую эмпирическую формулу. Он также первым смог определить молекулярную массу белка.
По мнению Мульдера, любой белок состоит из малых структурных составляющих – «протеинов». А в 1838 году шведский учёный Я. Берцелиус предложил термин «протеины» в качестве общего названия всех белков.

В последующие 30-40 лет были проведены исследования большей части аминокислот, входящих в состав протеинов. В 1894 году А. Коссель, немецкий физиолог, сделал предположение, что именно аминокислоты и являются теми самыми структурными составляющими белков, и что они соединены между собой пептидными связями. Он пытался исследовать аминокислотную последовательность белка.
В 1926 году, наконец, была признана главенствующая роль протеинов в организме. Это произошло тогда, когда химик из США Д. Самнер доказал, что уреаза (фермент, без которого невозможно протекание многих химических процессов) является белком.

Выделить чистые протеины для нужд науки на тот момент было крайне сложно. Именно поэтому первые опыты проводились с применением тех полипептидов, которые можно было с минимальными затратами очистить в значительном количестве – это белки крови, куриные белки, различные токсины, ферменты пищеварительного или метаболического происхождения, выделяемые после забоя крупного скота. В конце 50-х годов получилось очистить бычью панкреатическую рибонуклеазу. Именно это вещество стало для многих учёных экспериментальным объектом.

В современной науке исследование протеинов продолжилось на качественно новом уровне. Существует отрасль биохимии, называемая протеомикой. Теперь, благодаря протеомике, можно исследовать не только выделенные очищенные белки, но и параллельное, одновременное изменение модификации множества белков, относящихся к разным клеткам и тканям. Теперь учёные могут теоретически рассчитать структуру белка по последовательности аминокислот. Методы криоэлектронной микроскопии позволяют изучить большие и малые белковые комплексы.

Свойства протеинов

Размер протеинов может измеряться в количестве составляющих их аминокислот или в дальтонах, обозначающих их молекулярную массу. Например, белки дрожжей состоят из 450 аминокислот, а их молекулярная масса составляет 53 килодальтона. Самый крупный из известных современной науке белков, который имеет название титин, состоит из более чем 38 тысяч аминокислот и обладает молекулярной массой около 3700 килодальтонов.
Белки, которые связываются с нуклеиновыми кислотами за счёт того, что взаимодействуют с их фосфатными остатками, считаются основными белками. К ним относятся протамины и гистоны.

Белки различают по степени их растворимости, большинство из них хорошо растворимы в воде. Однако встречаются и исключения. Фиброин (основа паутины и шёлка) и кератин (основа волос у человека, а также шерсти у животных и перьев у птиц), являются нерастворимыми.

Денатурация

Как правило, протеины сохраняют физико-химические свойства и структуру живого организма, к которому они относятся. Следовательно, если организм приспособлен к определённой температуре, то и белок её выдержит и не изменит своих свойств.
Изменение таких условий как окружающая температура, или попадание в кислотную/щелочную среду, приводит к тому, что протеин теряет вторичную, третичную и четвертичную структуры. Потеря нативной структуры, присущей живой клетке, называется денатурацией или сворачиванием белка. Денатурация может быть частичной или полной, необратимой или обратимой. Самый популярный и бытовой пример необратимой денатурации – это приготовление куриного яйца вкрутую. Под действием высокой температуры, овальбумин, прозрачный протеин, становится непрозрачным и плотным.

В некоторых случаях денатурация является обратимой, обратное состояние белку можно вернуть при помощи солей аммония. Обратимую денатурацию применяют как метод очистки белка.

Простые и сложные протеины

Помимо пептидных цепей, в состав некоторых белков входят и неаминокислотные структурные единицы. По критерию наличия или отсутствия неаминокислотных фрагментов, протеины делят на две группы: сложные и простые белки. Простые протеины состоят только из аминокислотных цепей. Сложные протеины содержат фрагменты, имеющие небелковую природу.

По химической природе сложных белков выделяют пять классов:

  • Гликопротеиды.
  • Хромопротеиды.
  • Фосфопротеиды.
  • Металлопротеиды.
  • Липопротеиды.
Гликопротеиды содержат в себе ковалентно связанные между собой углеводные остатки и их разновидность – протеогликаны. К гликопротеидам относятся, например, иммуноглобулины.

Хромопротеиды – это общее наименование сложных протеинов, к которым относятся флавопротеиды, хлорофиллы, гемоглобин, и другие.

Белки, называемые фосфопротеидами, содержат в своём составе остатки фосфорной кислоты. К этой группе протеинов относится, например, казеин молока.

Металлопротеиды – это протеины, которые содержат ковалентно связанные ионы некоторых металлов. Среди них есть протеины, которые выполняют транспортные и депонирующие функции (трансферрин, ферритин).

Сложные белки липопротеиды содержат в своём составе остатки липидов. Их функция - транспортировка липидов.

Биосинтез протеинов

Живые организмы создают белки из аминокислот на основе генетической информации, которая закодирована в генах. Каждый из синтезируемых белков состоит из совершенно уникальной последовательности соединённых аминокислот. Уникальная последовательность определяется таким фактором как нуклеотидная последовательность гена, кодирующая информацию о данном белке.

Генетический код состоит из кодонов. Кодоном называют единицу генетической информации, состоящей из остатков нуклеотидов. Каждый из кодонов отвечает за подсоединение одной аминокислоты к белку. Общее их количество – 64. Некоторые аминокислоты определяются не одним, а несколькими кодонами.

Функции протеинов в организме

Наравне с другими биологическими макромолекулами (полисахаридами и липидами) протеины нужны организму для осуществления большинства жизненных процессов в клетках. Протеины осуществляют метаболические процессы и энергетические трансформации. Они входят в состав органелл – клеточных структур, участвуют в синтезе межклеточного вещества.

Следует заметить, что классификация протеинов по их функциям является достаточно условной, потому что у некоторых живых организмов один и тот же протеин может выполнять несколько разных функций. Многие функции протеины выполняют благодаря тому, что обладают высокой ферментативной активностью. В частности, к таким ферментам относится двигательный белок миозин, а также регуляторные белки протеинкиназы.

Каталитическая функция

Наиболее изученная роль протеинов в организме – это катализ разных химических реакций. Ферментами называют группу протеинов, обладающую специфическими каталитическими свойствами. Каждый из таких ферментов является катализатором одной или нескольких сходных реакций. Науке известно несколько тысяч ферментативных веществ. Например, вещество пепсин, расщепляющее в процессе пищеварения белки, является ферментом.

Более 4 000 реакций, протекающих в нашем организме, нуждаются в катализации. Без воздействия ферментов реакция протекает в десятки и сотни раз медленнее.
Молекулы, присоединяющиеся к ферменту в процессе реакции, и затем видоизменяющиеся, называются субстратами. В составе фермента множество аминокислот, но далеко не все из них взаимодействуют с субстратом, и уж тем более не все из них напрямую участвуют процессе катализации. Та часть фермента, к которой присоединяется субстрат, считается активным ферментативным центром.

Структурная функция

Структурные протеины цитоскелета являются своего рода жёсткой основой, придающей форму клеткам. Благодаря ним может изменяться форма клеток. К ним можно отнести эластин, коллаген, кератин. Основными компонентами межклеточного вещества в соединительной ткани является коллаген и эластин. Кератин является основой для образования волос и ногтей, а также перьев у птиц.

Защитная функция

Выделяют несколько защитных функций протеинов: физическая, иммунная, химическая.
В формировании физической защиты принимает участие коллаген. Он образует базис межклеточного вещества таких разновидностей соединительной ткани как кости, хрящи, сухожилия и глубокие слои кожи (дерма). Примерами данной группы протеинов служат тромбины и фибриногены, принимающие участие в свёртывании крови.

Иммунная защита предполагает участие протеинов, входящих в состав крови или других биологических жидкостей, в формировании защитного ответа организма на атаку патогенных микроорганизмов или на повреждение. Например, иммуноглобулины нейтрализуют вирусы, бактерии, или чужеродные протеины. Антитела, вырабатывающиеся иммунной системой, прикрепляются к чужеродным для этого организма веществам, которые называются антигенами, и нейтрализуют их. Как правило, антитела секретируются в межклеточное пространство или закрепляются в мембранах специализированных клеток плазмоцитов.

Ферменты и субстрат соединяются между собой не слишком тесно, в противном случае протекание катализируемой реакции может нарушиться. А вот стойкость присоединения антигена и антител ничем не ограничивается.

Химическая защита состоит в связывании белковыми молекулами различных токсинов, то есть в обеспечении детоксикации организма. Самую ответственную роль в детоксикации нашего организма играют печёночные ферменты, которые расщепляют яды или переводят их в растворимую форму. Растворённые токсины быстро покидают организм.

Регуляторная функция

Большая часть внутриклеточных процессов регулируется белковыми молекулами. Эти молекулы выполняют узкоспециализированную функцию, и не являются ни строительным клеточным материалом, ни источником энергии. Регуляция осуществляется за счёт активности ферментов или за счёт связывания с другими молекулами.
Важную роль в регуляции процессов внутри клеток играют протеинкиназы. Это ферменты, влияющие на активность других протеинов с помощью присоединения к ним фосфатных частиц. Они либо усиливают активность, либо полностью подавляют её.

Сигнальная функция

Сигнальная функция белков выражается в их способности служить сигнальными веществами. Они передают сигналы между тканями, клетками, органами. Иногда сигнальную функцию считают похожей на регуляторную, поскольку многие регуляторные внутриклеточные протеины также осуществляют передачу сигналов. Клетки взаимодействуют между собой с помощью сигнальных белков, которые распространяются через межклеточное вещество.

Цитокины, белки-гормоны выполняют сигнальную функцию.
Гормоны разносятся кровью. Рецептор при связывании с гормоном запускает в клетке ответную реакцию. Благодаря гормонам осуществляется регуляция концентрации веществ в клетках крови, а также регуляция клеточного роста и размножения. Примером таких протеинов служит широко известный инсулин, который регулирует концентрацию в крови глюкозы.

Цитокины являются небольшими пептидными информационными молекулами. Они действуют как регуляторы взаимодействия между различными клетками, а также определяют выживаемость этих клеток, подавляют, или стимулируют их рост и функциональную активность. Без цитокинов невозможна согласованная работа нервной, эндокринной и иммунной систем. Например, цитокины могут вызвать некроз опухоли – то есть подавление роста и жизнедеятельности воспалительных клеток.

Транспортная функция

Растворимые белки, которые принимают участие в транспортировке малых молекул, должны легко соединяться с субстратом, если он присутствует в большой концентрации, и также легко должны его высвобождать там, где он находится в низкой концентрации. Примером транспортных протеинов является гемоглобин. Он транспортирует из лёгких кислород и приносит его к остальным тканям, а также обратно переносит от тканей к лёгким углекислый газ. Во всех царствах живых организмов были найдены белки, аналогичные гемоглобину.

Запасная (или резервная) функция

К таким протеинам относят казеин, овальбумин и другие. Эти резервные протеины в яйцеклетках животных и в семенах растений запасаются в качестве источника энергии. Они выполняют питательные функции. Много протеинов используется в нашем организме в качестве источника аминокислот.

Рецепторная функция белков

Белковые рецепторы могут располагаться как в клеточной мембране, так и в цитоплазме. Одна часть белковой молекулы принимает сигнал (любой природы: химической, световой, термической, механической). Белок-рецептор под влиянием сигнала претерпевает конформационные изменения. Эти изменения влияют на другую часть молекулы, которая ответственна за передачу сигнала на остальные клеточные компоненты. Механизмы сигнальной передачи разнятся друг с другом.

Моторная (или двигательная) функция

Моторные белки ответственны за обеспечение движения и сокращения мышц (на уровне организма) и за движение жгутиков и ресничек, внутриклеточный транспорт веществ, амебоидное движение лейкоцитов (на клеточном уровне).

Белки в обмене веществ

Большая часть растений и микроорганизмов в состоянии синтезировать 20 основных, а также некоторое количество дополнительных аминокислот. Но если они есть в окружающей среде, то организм предпочтёт сберечь энергию и транспортировать их внутрь, а не синтезировать.

Те аминокислоты, которые не синтезируются организмом, называются незаменимыми, следственно, могут поступать к нам только извне.

Человек получает аминокислоты из тех белков, которые содержатся в пище. Белки подвергаются денатурации в процессе пищеварения под действием кислых желудочных соков и ферментов. Некоторая часть полученных в результате пищеварительного процесса аминокислот применяется для синтеза нужных протеинов, а остальная их часть в процессе глюконеогенеза превращается в глюкозу или применяется в цикле Кребса (это процесс метаболического распада).

Использование протеинов в качестве энергетического источника особенно важно в неблагоприятных условиях, когда организм использует внутренний «неприкосновенный запас» – собственные белки. Аминокислоты для организма являются также важным источником азота.

Единых норм суточной потребности в белках нет. Микрофлора, населяющая толстый кишечник, также синтезирует аминокислоты, и они не могут учитываться при составлении протеиновых норм.

Запасы протеинов в человеческом организме минимальны, а новые протеины могут синтезироваться только из распадающихся белков, поступающих от тканей организма и из аминокислот, поступающих вместе пищей. Из тех веществ, которые входят в состав жиров и углеводов, протеины не синтезируются.

Недостаток белка
Недостаток белковых веществ в рационе вызывает у детей сильное замедление роста и развития. Для взрослых белковый дефицит опасен появлением глубоких изменений в печени, изменением гормонального фона, нарушением функционирования желёз внутренней секреции, ухудшением усвояемости питательных веществ, ухудшением памяти и работоспособности, проблемами с сердцем. Все эти негативные явления связаны с тем, что протеины участвуют почти во всех процессах человеческого организма.

В 70 годах прошлого века были зафиксированы летальные случаи у людей, долгое время соблюдающих низкокалорийную диету с выраженным дефицитом белка. Как правило, непосредственной причиной смерти в данном случае являлись необратимые изменения в сердечной мышце.

Дефицит протеинов снижает устойчивость иммунитета к инфекциям, поскольку уменьшается уровень образования антител. Нарушение синтеза интерферона и лизоцима (защитных факторов) вызывает обострение воспалительных процессов. Кроме того, белковый дефицит зачастую сопровождается недостатком витаминов, что в свою очередь тоже приводит к неблагоприятным последствиям.

Дефицит влияет не лучшим образом на выработку ферментов и на усвояемость важных питательных веществ. Не следует забывать, что гормоны являются белковыми образованиями, следовательно, недостаток протеинов может привести к сильным гормональным нарушениям.

Любая активность физического характера наносит вред мышечным клеткам, и чем нагрузка больше, тем больше мышцы страдают. Для восстановления повреждённых клеток мышц необходимо большое количество качественного белка. Вопреки распространённому мнению, физические нагрузки только тогда полезны, когда с пищей в организм поставляется достаточное количество белка. При интенсивных физических нагрузках потребление белка должно достигать 1,5 - 2 грамма на каждый килограмм веса.

Избыток белка

Для поддержания азотистого баланса в организме нужно определённое количество протеинов. Если в рационе белка немного больше, то это не повредит здоровью. Избыточное количество аминокислот в этом случае используется просто как дополнительный источник энергии.

Но если человек не занимается спортом, и при этом употребляет более чем 1,75 грамм белка на килограмм веса, то в печени накапливается избыток протеина, который превращается в азотистые соединения и глюкозу. Азотистое соединение (мочевина) должно в обязательном порядке выводиться почками из организма.

Кроме того, при переизбытке белка возникает кислая реакция организма, что приводит к потере кальция из-за изменения питьевого режима. К тому же мясная пища, богатая белком, зачастую содержит пурины, некоторые из которых в процессе метаболизма откладываются в суставах и вызывают развитие подагры. Следует отметить, что нарушения, связанные с переизбытком протеином, встречаются намного реже, чем нарушения, связанные с белковой недостаточностью.

Оценка достаточного количества белка в рационе осуществляется по состоянию азотистого баланса. В организме беспрестанно происходит синтезирование новых протеинов и выделение наружу конечных продуктов белкового метаболизма. В состав протеинов входит азот, не содержащийся ни в жирах, ни в углеводах. И если азот откладывается в организме про запас, то исключительно в составе белков. При белковом распаде он должен выделиться наружу вместе с мочой. Для того чтобы функционирование организма осуществлялось на нужном уровне, требуется восполнить удаляемый азот. Азотистый баланс означает, что количество потребляемого азота соответствует количеству выведенного из организма.

Белковое питание


Польза пищевых протеинов оценивается по коэффициенту белковой усвояемости. Данный коэффициент учитывает химическую ценность (состав аминокислот), и биологическую ценность (процент переваривания протеинов). Полноценными источниками протеинов считаются те продукты, которые имеют коэффициент усвояемости равный 1,00.

Коэффициент усвояемости равен 1,00 в следующих продуктах: яйца, соевый белок, молоко. Говядина показывает коэффициент 0,92.

Эти продукты являются высококачественным источником протеинов, однако нужно помнить, что они содержат много жира, поэтому злоупотреблять их частотой в рационе нежелательно. Помимо большого количества белка, в организм также попадёт излишнее количество жира.

Предпочтительные продукты с богатым протеиновым содержанием: соевые сыры, нежирные сыры, нежирная телятина, яичный белок, обезжиренный творог, свежая рыба и морепродукты, молодой барашек, курятина, белое мясо.
Менее предпочтительно употребление таких продуктов, как: молоко и йогурты с добавлением сахара, красное мясо (вырезка), темное куриное и индюшачье мясо, нежирная нарезка, домашний творог, переработанное мясо в виде бекона, салями, ветчины.

Яичный белок – это чистый белок, в котором нет жира. В постном мясе содержится около 50 % килокалорий, приходящихся на долю протеинов; в продуктах, содержащих крахмал – 15%; в обезжиренном молоке – 40 %; в овощах – 30 %.

Главное правило при выборе белкового питания состоит в следующем: большее количество белка на единицу калорий и высокий коэффициент усвояемости белка. Полезнее всего употреблять продукты с низким содержанием жира и высоким содержанием белков. Данные о калорийности можно найти на упаковке любого продукта. Обобщённые данные о содержании белков и жиров в тех продуктах, калораж которых сложно высчитать, можно найти в специальных таблицах.

Легче усваиваются протеины, подвергнувшиеся тепловой обработке, поскольку они становятся легкодоступными для воздействия ферментов пищеварительного тракта. Однако температурная обработка может снизить биологическую ценность протеина из-за того, что разрушаются некоторые аминокислоты.

Содержание белков и жиров в некоторых пищевых продуктах

Продукты Белки, граммы Жиры, граммы
Курятина 20,8 8,9
Сердце 15 3
Свинина нежирная 16,3 27,8
Говядина 18,9 12,3
Телятина 19,7 1,2
Докторская варёная колбаса 13,7 22,9
Диетическая варёная колбаса 12,2 13,5
Минтай 15,8 0,7
Сельдь 17,7 19,6
Икра осетровая зернистая 28,6 9,8
Хлеб пшеничный из муки I сорта 7,6 2,3
Хлеб ржаной 4,5 0,8
Сдобная выпечка 7,2 4,3
Очень полезно употреблять соевые продукты: сыр тофу, молоко, мясо. Соя содержит абсолютно все нужные аминокислоты в таком соотношении, какое нужно для удовлетворения потребностей организма. К тому же она отлично усваивается.
Казеин, который содержится в молоке, также является полным протеином. Коэффициент усвояемости у него равен 1,00. Сочетание выделенного из молока казеина и сои даёт возможность создавать полезные продукты питания с высоким белковым содержанием, при этом они не содержат лактозу, что разрешает употребление их лицами, страдающими непереносимостью лактозы. Еще один плюс таких продуктов состоит в том, что в них нет сыворотки, которая является потенциальным источником аллергенов.

Метаболизм протеинов


Чтобы усвоить белок, организму нужно много энергии. Первым делом организм должен расщепить аминокислотную цепочку белка на несколько коротких цепочек, или же на сами аминокислоты. Этот процесс достаточно длительный и требующий разных ферментов, которые организм должен создать и транспортировать в пищеварительный тракт. Остаточные продукты белкового обмена – азотистые соединения – должны быть выведены из организма.


Все эти действия в сумме потребляют немалое количество энергии для усвоения белковой пищи. Поэтому белковая пища стимулирует ускорение метаболизма и увеличение энергетических затрат на внутренние процессы.

На усвоение еды организм может потратить около 15% от всей калорийности рациона.
Пища с высоким содержанием протеинов, в процессе метаболизма способствует усилению теплопродукции. Температура тела немного увеличивается, что приводит к дополнительному расходу энергии на процесс термогенеза.

Белки не всегда используются в качестве энергетической субстанции. Это связано с тем, что применение их в качестве источника энергии для организма бывает невыгодным, ведь из определённого количества жиров и углеводов можно получить гораздо больше калорий и намного эффективнее, чем из аналогичного количества протеина. К тому же в организме редко бывает переизбыток белков, а если он и есть, то большая часть избыточных протеинов идёт для осуществления пластических функций.

В том случае, когда в питании не достаёт энергетических источников в виде жиров и углеводов, организм принимается за использование накопленных жиров.

Достаточное количество протеинов в рационе помогает активизировать и нормализовать замедленный обмен веществ у тех людей, которые страдают ожирением, а также позволяет поддерживать мышечную массу.

Если белка не хватает, организм переключается на использование мышечных белков. Это происходит потому, что мышцы не так важны для поддержания жизнедеятельности организма. В мышечных волокнах сгорает большая часть калорий, и снижение мышечной массы понижает энергетические затраты организма.

Очень часто люди, придерживающиеся различных диет для похудения, выбирают такую диету, в которой очень мало белка поступает с пищей в организм. Как правило, это овощные или фруктовые диеты. Кроме вреда, такая диета ничего не принесёт. Функционирование органов и систем при недостатке протеинов угнетается, что вызывает различные нарушения и заболевания. Каждую диету надо рассматривать с точки зрения потребности организма в белке.

Такие процессы как усвоение белков и применение их в энергетических потребностях, а также выведение продуктов белкового метаболизма, требует больше жидкости. Чтобы не получить обезвоживание, в день надо принимать около 2 литров воды.

Так же как и другие биологические макромолекулы (полисахариды, липиды и нуклеиновые кислоты), белки являются необходимыми компонентами всех живых организмов и играют важную роль в жизнедеятельности клетки. Белки осуществляют процессы обмена веществ. Они входят в состав внутриклеточных структур -органеллицитоскелета, секретируются во внеклеточное пространство, где могут выступать в качествесигнала, передаваемого между клетками, участвовать вгидролизепищи и образованиимежклеточного вещества.

Классификация белков по их функциям является достаточно условной, так как один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза - которая не только присоединяет остаток лизинактРНК, но и регулируеттранскрипциюнескольких генов. Многие функции белки выполняют благодаря своейферментативнойактивности. Так, ферментами являются двигательный белокмиозин, регуляторные белкипротеинкиназы, транспортный белокнатрий-калиевая аденозинтрифосфатазаи др.

Каталитическая функция

Наиболее хорошо известная функция белков в организме - катализразличных химических реакций. Ферменты - это белки, обладающие специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), в том числерепликациюирепарациюДНК и матричный синтез РНК. К 2013 году было описано более 5000 тысяч ферментов. Ускорение реакции в результате ферментативного катализа может быть огромным. Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называютсясубстратами. Часть молекулы фермента, которая обеспечивает связывание субстрата и катализ, называетсяактивным центром.

Международный союз биохимии и молекулярной биологиив 1992 году предложил окончательный вариант иерархической номенклатуры ферментов, основанной на типе катализируемых ими реакций. Согласно этой номенклатуре названия ферментов всегда должны иметь окончание -аза и образовываться от названий катализируемых реакций и их субстратов. Каждому ферменту приписывается индивидуальный код, по которому легко определить его положение в иерархии ферментов. По типу катализируемых реакций все ферменты делят на 6 классов:

    КФ 1: Оксидоредуктазы , катализирующие окислительно-восстановительные реакции;

    КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстрата на другую;

    КФ 3: Гидролазы , катализирующие гидролиз химических связей;

    КФ 4: Лиазы , катализирующие разрыв химических связей без гидролиза с образованием двойной связив одном из продуктов;

    КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата;

    КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза дифосфатной связи АТФили сходного трифосфата.

Структурная функция

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная функция

Существует несколько видов защитных функций белков:

    Физическая защита. Физическую защиту организма обеспечивают коллаген- белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы));кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производныхэпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами белков этой группы служатфибриногеныитромбины, участвующие всвёртывании крови.

    Химическая защита. Связывание токсиновбелковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферментыпечени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

    Иммунная защита. Белки, входящие в состав кров и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белкисистемы комплементаиантитела(иммуноглобулины) относятся к белкам второй группы; они нейтрализуютбактерии,вирусыили чужеродные белки. Антитела, входящие в составадаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам,антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могутсекретироватьсяв межклеточное пространство или закрепляться в мембранах специализированныхВ-лимфоцитов, которые называютсяплазмоцитами.

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют продвижение клетки по клеточному циклу,транскрипцию,трансляцию,сплайсинг, активность других белков и многие другие процессы. Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например,протеинкиназы), либо за счёт специфичного связывания с другими молекулами.

Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы и протеинфосфатазы- ферменты, которые активируют или подавляют активность других белков путём присоединения к ним или отщепления фосфатных групп.

Сигнальная функция

Сигнальная функция белков- способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, органами и организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны,цитокины,факторы ростаи др.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с его рецептором является сигналом, запускающим ответную реакцию клетки. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрациюглюкозыв крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - пептидные сигнальные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность иапоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служитьфактор некроза опухоли, который передаёт сигналы воспаления между клетками организма.

Транспортная функция

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата.

Некоторые мембранные белкиучаствуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость.Липидныйкомпонент мембраны водонепроницаем (гидрофобен), что предотвращаетдиффузиюполярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многиеионные каналыспециализируются на транспорте только одного иона; так,калиевыеинатриевыеканалы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ.

Запасная (резервная) функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S) и яйцеклетках животных. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Рецепторная функция

Белковые рецепторы могут находиться как в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы - белок-рецептор - происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определённую химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, - внутри.

Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят молекулы и органоиды из периферических частей клетки по направлению к центросоме, кинезины - в противоположном направлении. Динеины также отвечают за движение ресничек и жгутиков эукариот. Цитоплазматические варианты миозина могут принимать участие в транспорте молекул и органоидов по микрофиламентам.

Гормоны имеют различную химическую природу – это белки, пептиды, стероиды и производные аминокислот. Эти вещества являются посредниками, которые доставляют сигналы к мишеням периферических тканей.

Клетки по-разному реагируют на воздействия различных гормонов. Например, тиреоидные и способны проникать через клеточную мембрану, образуя рецепторные комплексы, которые, в свою очередь, взаимодействуют с генами, участвующими в синтезе белка. Остальные гормоны связываются в сложные реакции, контактируя с рецепторами мембран клеток. При этом создается сложная цепь, образующая вторичного посредника внутри клетки. А это приводит к активности ферментов.

Выполнив свою функцию, гормоны расщепляются в клетках-мишенях, крови, либо подвергаются распаду в печени и выводятся из организма, чаще всего - с мочой. Центральная нервная система контролирует действие гормонов, оказывает влияние на их выработку и воздействие на обменные процессы, ускоряет синтез белков.

Белковые гормоны

К белкам относятся гормоны, которые вырабатываются в гипоталамусе и гипофизе головного мозга, поджелудочной, щитовидной железе, кишечнике:

  • гормон роста;
  • кортикотропин (АКГГ);
  • либерины;
  • статины;
  • вазопрессин;
  • соматотропин;

Какую роль выполняют белки-гормоны в организме человека? Белки-гормоны выполняют регуляторные функции клеточной и физиологической активности. Например, контролирует уровень глюкозы в крови и обеспечивает ее поступление в клетки. отвечает за содержания кальция и состояние костей скелета.

Функции белков в организме

Белки участвуют в метаболизме, входят в структуру органелл и цитоскелета, выделяются в межклеточное пространство, участвуют в гидролизе пищи.

Функциональная классификация белков достаточно условная, так как один гормон может выполнять различные задачи.

  • Регуляторная функция обеспечивает продвижение клетки по клеточному циклу, ее транскрипцию, сплайсинг, трансляцию, активность других белковых соединений. Эта функция происходит за счет связывания с другими молекулами или ферментативного действия. Важную роль играют ферменты, подавляющие активность других белков, это протеинкиназа и протеинфосфатаза.
  • Транспортная функция заключается в переносе мелких молекул. Например, гемоглобин транспортирует кислород из легких к периферическим тканям, а обратно доставляет углекислый газ. Некоторые белковые гормоны переносят молекулы через клеточную мембрану, повышая ее проницаемость. Достигается это за счет образования ионных каналов или АТФ-синтазы.

  • Рецепторное действие. При раздражении белкового рецептора происходит изменение расположения атомов в молекуле, что позволяет обеспечить передачу сигнала с поверхности мембраны к другим рецепторам внутри клетки. При этом создаются ионные каналы, связи-посредники или химические реакции, в зависимости от того, какой это гормон.
  • Каталитическая функция ферментов – это расщепление сложных молекул и их синтез, образование субстратов. Все ферменты классифицируют по типу катализируемых реакций.

  • Защитная работа белков-гормонов бывает нескольких видов: физическая, химическая и иммунная. За физическую отвечает коллаген, кератин, тромбин, фибриноген. Химическую защиту обеспечивают ферменты печени, которые расщепляют токсины и выводят их из организма. Иммунная защита обеспечивается иммуноглобулинами, противостоящими вирусам, бактериям, чужеродным белкам. Адаптивные клетки присоединяются к патологическим молекулам и формируют антигены, которые уничтожают чужеродные тела.
  • За структурную функцию отвечают белки цитоскелета, они придают форму клеткам. Например, эластин и коллаген являются основными компонентами соединительной ткани кожи, а кератин входит в структуру волос и ногтей.

  • Моторная функция отвечает за сократительную работу мышц, движение лейкоцитов, ресничек слизистых оболочек, внутриклеточный транспорт.
  • Резервная функция – это белки, которые накапливаются в качестве запасного источника энергии, аминокислот и оказывают влияние на метаболизм.
  • Сигнальная функция белков – это передача импульсов между клетками. Эту задачу выполняют цитокины, факторы роста. Гормоны отвечают за обменные процессы, размножение, рост, химический состав крови. Цитокины обеспечивают слаженную работу иммунной, эндокринной и нервной системы.

Влияние белков на метаболизм

Состоят белки из аминокислот, соединенных в цепочку пептидной связью. Остатки образующих веществ постоянно подвергаются распаду с последующей утилизацией неиспользованных продуктов. В то же время происходит синтез новых белков. Ускоренный процесс обновления наблюдается в печени, кишечнике, плазме крови. Медленнее обновляются белки в клетках мозга, сердце, половых железах. А наиболее медленный процесс наблюдается в мышцах, коже, костях и сухожилиях.

Белки-гормоны состоят из 20 аминокислот, 18 из которых синтезируются в организме и являются заменимыми, а остальные 8 – это незаменимые вещества, которые поступают только вместе с продуктами питания (триптофан, лизин, валин, метионин, изолейцин, треонин, лейцин, фенилаланин). Дефицит незаменимых аминокислот приводит к отставанию в росте, уменьшению массы тела.

Пищевые белки, попадая в организм, расщепляются в кислой среде желудка, подвергаются гидролизу ферментов (протеазы). Некоторые аминокислоты, полученные в результате переваривания пищи, участвуют в синтезе белков-гормонов, остальные превращаются в глюкозу и используются в качестве источника энергии.

По биологической ценности белки различают:

  • полноценные;
  • неполноценные.

Первая группа – это белки, содержащие необходимый аминокислотный состав, а вторая – это гормоны, с недостаточным составом. Поэтому люди должны ежедневно употреблять белковую пищу с высокой биологической ценностью: мясо, рыба, яйца, молоко.

Регуляция белкового обмена

Соматотропин – это белковый гормон человека, вырабатывающийся гипофизом головного мозга. Его функцией является увеличение размеров внутренних органов и тканей во время роста у детей. У взрослых он отвечает за повышение проницаемости клеточных мембран для поступления аминокислот и подавление протеолитических ферментов.

Влияют на гормональный обмен белков и тиреоидные гормоны (тироксин, трийодтиронин), которые оказывают стимулирующее действие. Глюкокортикоиды усиливают белковый распад в мышечных тканях, а в печени, наоборот, синтезируют белки.

Список литературы

  1. Макаров В.М. Кылбанова Е.С., Хорунов А.Н., Аргунова А.Н., Пальшина А.М., Фармакотерапия неспецифических заболеваний легких. Методическое пособие. Якутск, Изд-во ЯГУ, 2008.
  2. Руководство для врачей скорой мед. помощи. Под редакцией В.А. Михайловича, А.Г. Мирошниченко. 3-е издание. СПб, 2005.
  3. Бессонов П.П., Бессонова Н.Г. Синдромная диагностика хронических болезней печени.

Материал из Википедии - свободной энциклопедии

Протеинкиназы регулируют активность других белков путём фосфолирования - присоединения остатков фосфорной кислоты к остаткам аминокислот, имеющих гидроксильные группы . При фосфорилировании обычно изменяется функционирование данного белка, например, ферментативная активность, а также положение белка в клетке.

Существуют также протеинфосфатазы - белки, которые отщепляют фосфатные группы. Протеинкиназы и протеинфосфатазы регулируют обмен веществ, а также передачу сигналов внутри клетки. Фосфорилирование и дефосфорилирования белков - один из главным механизмов регуляции большинства внутриклеточных процессов.

См. также

  • Избранную статью белки и особенно раздел Функции белков в организме

Напишите отзыв о статье "Регуляторная функция белков"

Ссылки

  • Контроль транскрипции
  • Белки против РНК - кто первым придумал сплайсинг?
  • Протеинкиназы
  • Трансляция и её регуляция

Литература

  • Д.Тейлор, Н.Грин, У.Стаут. Биология (в 3-х томах).

Отрывок, характеризующий Регуляторная функция белков

– У вас тут от живого мужа замуж выходить стали. Ты, может, думаешь, что ты это новенькое выдумала? Упредили, матушка. Уж давно выдумано. Во всех…… так то делают. – И с этими словами Марья Дмитриевна с привычным грозным жестом, засучивая свои широкие рукава и строго оглядываясь, прошла через комнату.
На Марью Дмитриевну, хотя и боялись ее, смотрели в Петербурге как на шутиху и потому из слов, сказанных ею, заметили только грубое слово и шепотом повторяли его друг другу, предполагая, что в этом слове заключалась вся соль сказанного.
Князь Василий, последнее время особенно часто забывавший то, что он говорил, и повторявший по сотне раз одно и то же, говорил всякий раз, когда ему случалось видеть свою дочь.
– Helene, j"ai un mot a vous dire, – говорил он ей, отводя ее в сторону и дергая вниз за руку. – J"ai eu vent de certains projets relatifs a… Vous savez. Eh bien, ma chere enfant, vous savez que mon c?ur de pere se rejouit do vous savoir… Vous avez tant souffert… Mais, chere enfant… ne consultez que votre c?ur. C"est tout ce que je vous dis. [Элен, мне надо тебе кое что сказать. Я прослышал о некоторых видах касательно… ты знаешь. Ну так, милое дитя мое, ты знаешь, что сердце отца твоего радуется тому, что ты… Ты столько терпела… Но, милое дитя… Поступай, как велит тебе сердце. Вот весь мой совет.] – И, скрывая всегда одинаковое волнение, он прижимал свою щеку к щеке дочери и отходил.
Билибин, не утративший репутации умнейшего человека и бывший бескорыстным другом Элен, одним из тех друзей, которые бывают всегда у блестящих женщин, друзей мужчин, никогда не могущих перейти в роль влюбленных, Билибин однажды в petit comite [маленьком интимном кружке] высказал своему другу Элен взгляд свой на все это дело.
– Ecoutez, Bilibine (Элен таких друзей, как Билибин, всегда называла по фамилии), – и она дотронулась своей белой в кольцах рукой до рукава его фрака. – Dites moi comme vous diriez a une s?ur, que dois je faire? Lequel des deux? [Послушайте, Билибин: скажите мне, как бы сказали вы сестре, что мне делать? Которого из двух?]
Билибин собрал кожу над бровями и с улыбкой на губах задумался.
– Vous ne me prenez pas en расплох, vous savez, – сказал он. – Comme veritable ami j"ai pense et repense a votre affaire. Voyez vous. Si vous epousez le prince (это был молодой человек), – он загнул палец, – vous perdez pour toujours la chance d"epouser l"autre, et puis vous mecontentez la Cour. (Comme vous savez, il y a une espece de parente.) Mais si vous epousez le vieux comte, vous faites le bonheur de ses derniers jours, et puis comme veuve du grand… le prince ne fait plus de mesalliance en vous epousant, [Вы меня не захватите врасплох, вы знаете. Как истинный друг, я долго обдумывал ваше дело. Вот видите: если выйти за принца, то вы навсегда лишаетесь возможности быть женою другого, и вдобавок двор будет недоволен. (Вы знаете, ведь тут замешано родство.) А если выйти за старого графа, то вы составите счастие последних дней его, и потом… принцу уже не будет унизительно жениться на вдове вельможи.] – и Билибин распустил кожу.
– Voila un veritable ami! – сказала просиявшая Элен, еще раз дотрогиваясь рукой до рукава Билибипа. – Mais c"est que j"aime l"un et l"autre, je ne voudrais pas leur faire de chagrin. Je donnerais ma vie pour leur bonheur a tous deux, [Вот истинный друг! Но ведь я люблю того и другого и не хотела бы огорчать никого. Для счастия обоих я готова бы пожертвовать жизнию.] – сказала она.
Билибин пожал плечами, выражая, что такому горю даже и он пособить уже не может.
«Une maitresse femme! Voila ce qui s"appelle poser carrement la question. Elle voudrait epouser tous les trois a la fois», [«Молодец женщина! Вот что называется твердо поставить вопрос. Она хотела бы быть женою всех троих в одно и то же время».] – подумал Билибин.
– Но скажите, как муж ваш посмотрит на это дело? – сказал он, вследствие твердости своей репутации не боясь уронить себя таким наивным вопросом. – Согласится ли он?
– Ah! Il m"aime tant! – сказала Элен, которой почему то казалось, что Пьер тоже ее любил. – Il fera tout pour moi. [Ах! он меня так любит! Он на все для меня готов.]
Билибин подобрал кожу, чтобы обозначить готовящийся mot.
– Meme le divorce, [Даже и на развод.] – сказал он.
Элен засмеялась.
В числе людей, которые позволяли себе сомневаться в законности предпринимаемого брака, была мать Элен, княгиня Курагина. Она постоянно мучилась завистью к своей дочери, и теперь, когда предмет зависти был самый близкий сердцу княгини, она не могла примириться с этой мыслью. Она советовалась с русским священником о том, в какой мере возможен развод и вступление в брак при живом муже, и священник сказал ей, что это невозможно, и, к радости ее, указал ей на евангельский текст, в котором (священнику казалось) прямо отвергается возможность вступления в брак от живого мужа.
Вооруженная этими аргументами, казавшимися ей неопровержимыми, княгиня рано утром, чтобы застать ее одну, поехала к своей дочери.
Выслушав возражения своей матери, Элен кротко и насмешливо улыбнулась.
– Да ведь прямо сказано: кто женится на разводной жене… – сказала старая княгиня.
– Ah, maman, ne dites pas de betises. Vous ne comprenez rien. Dans ma position j"ai des devoirs, [Ах, маменька, не говорите глупостей. Вы ничего не понимаете. В моем положении есть обязанности.] – заговорилa Элен, переводя разговор на французский с русского языка, на котором ей всегда казалась какая то неясность в ее деле.
– Но, мой друг…
– Ah, maman, comment est ce que vous ne comprenez pas que le Saint Pere, qui a le droit de donner des dispenses… [Ах, маменька, как вы не понимаете, что святой отец, имеющий власть отпущений…]
В это время дама компаньонка, жившая у Элен, вошла к ней доложить, что его высочество в зале и желает ее видеть.
– Non, dites lui que je ne veux pas le voir, que je suis furieuse contre lui, parce qu"il m"a manque parole. [Нет, скажите ему, что я не хочу его видеть, что я взбешена против него, потому что он мне не сдержал слова.]
– Comtesse a tout peche misericorde, [Графиня, милосердие всякому греху.] – сказал, входя, молодой белокурый человек с длинным лицом и носом.
Старая княгиня почтительно встала и присела. Вошедший молодой человек не обратил на нее внимания. Княгиня кивнула головой дочери и поплыла к двери.
«Нет, она права, – думала старая княгиня, все убеждения которой разрушились пред появлением его высочества. – Она права; но как это мы в нашу невозвратную молодость не знали этого? А это так было просто», – думала, садясь в карету, старая княгиня.

В начале августа дело Элен совершенно определилось, и она написала своему мужу (который ее очень любил, как она думала) письмо, в котором извещала его о своем намерении выйти замуж за NN и о том, что она вступила в единую истинную религию и что она просит его исполнить все те необходимые для развода формальности, о которых передаст ему податель сего письма.
«Sur ce je prie Dieu, mon ami, de vous avoir sous sa sainte et puissante garde. Votre amie Helene».
[«Затем молю бога, да будете вы, мой друг, под святым сильным его покровом. Друг ваш Елена»]

26. Регуляторные функции

Они направлены на регуляцию внутренних психических процессов, на управление взаимодействием с внешним миром, на налаживания отношений между людьми. Координация процессов осуществляется на основе безусловных рефлексов, механика которая врожденная и обусловлены биологически. Проявляются в инстинктивных реакциях.

27. Ощущение: определение, свойства, виды

Ощущения определяют как процесс отражения отдельных свойств предметов и явлений объективного мира при их непосредственном воздействии на рецепторы. Физиологической основой ощущения является нервный процесс, возникающий при действии раздражителя на адекватный ему анализатор. К этому можно, пожалуй, добавить лишь то, что ощущения отражают и состояние организма самого субъекта с помощью рецепторов, расположенных в его теле. Ощущения являются исходным источником познания, важным условием формирования психики и ее нормального функционирования.

Потребность в постоянном получении ощущений хорошо проявляется в том случае, когда внешние раздражители отсутствуют (при сенсорной изоляции). Как показали эксперименты, в этом случае психика перестает нормально функционировать: возникают галлюцинации, нарушается мышление, отмечается патология восприятия своего тела и т.д. Специфические проблемы психологического характера возникают при сенсорной депривации, т. Е. При ограничении притока внешних воздействий, что хорошо известно на примере развития психики людей слепых или глухих, а также плохо видящих и слышащих.

Ощущения человека чрезвычайно разнообразны, хотя со времен Аристотеля очень долго говорили лишь о пяти чувствах - зрении, слухе, осязании, обонянии и вкусе. В XIX в. Знания о составе ощущений резко расширились в результате описания и изучения их новых видов, таких как вестибулярные, вибрационные, «мышечно-суставные» или кинестетические и др.

Свойства ощущений

Каким бы ни было ощущение, его можно описать с помощью нескольких характеристик, свойств, присущих

1. Модальность - качественная характеристика, в которой проявляется специфичность ощущения как простейшего психического сигнала по сравнению с сигналом нервным. Прежде всего, выделяются такие виды ощущений, как зрительные, слуховые, обонятельные и т.д. Однако и каждый вид ощущений имеет свои модальные характеристики. Для зрительных ощущений таковыми могут быть цветовой тон, светлота, насыщенность; для слуховых - высота тона, тембр, громкость; для тактильных - твердость, шероховатость и т.д.

2. Локализация - пространственная характеристика ощущений, т.е. Сведения о локализации раздражителя в пространстве.

Иногда (как, например, в случае болевых и интероцептивных, «внутренних» ощущений) локализация затруднена, неопределенна. Интересна в этом отношении «проблема зонда»: когда мы пишем или режем что-то, ощущения локализованы на кончике ручки или ножа, т.е. совсем не там, где зонд контактирует с кожей, воздействует на нее.

3. Интенсивность - это классическая количественная характеристика. Проблема измерения интенсивности ощущения является одной из главных в психофизике.

Основной психофизический закон отражает связь между величиной ощущения и величиной действующего раздражителя. Психофизика объясняет многообразие наблюдаемых форм поведения и психических состояний прежде всего различиями вызывающих их физических ситуаций. Задача - установить связь тела и души, предмета и ощущения, связанного с ним. Область раздражения вызывает ощущение. Каждый орган чувств имеет свои границы - значит есть область ощущения. Известны такие варианты основного психофизического закона, как логарифмический закон Г. Фехнера, степенной закон С. Стивенса, а также предложенный Ю.М. Забродиным обобщенный психофизический закон.

4. Продолжительность - временная характеристика ощущения. Она определяется функциональным состоянием органа чувств, но главным образом временем действия раздражителя и его интенсивностью.

Ощущение возникает позже, чем начинает действовать раздражитель, и не исчезает сразу с его прекращением. Период от начала действия раздражителя до возникновения ощущения называют латентным (скрытым) периодом ощущения. Он неодинаков для разных видов ощущений (для тактильных - 130 мс, для болевых - 370 мс, для вкусовых - 50 мс) и может резко меняться при заболеваниях нервной системы.

После прекращения действия раздражителя его след некоторое время сохраняется в виде последовательного образа, который может быть либо положительным (соответствующим по характеристикам стимулу), либо отрицательным (обладающим противоположными характеристиками, например окрашенным в дополнительный цвет). Положительные последовательные образы мы обычно не замечаем из-за их кратковременности. Появление последовательных образов можно объяснить явлением утомления сетчатки

Слуховые ощущения, аналогично зрительным, также могут сопровождаться последовательными образами.

Наиболее сравнимое явление при этом «звон в ушах», т.е. неприятное ощущение, которым часто сопровождается воздействие оглушающих звуков.

Виды ощущений

С помощью кинестетической и вестибулярной чувствительности индивид информирован о его собственных движениях и положении в пространстве.


Причин разного рода расстройств и нарушений в некоторых случаях составляет 50%” (Hartley, Robach&Abramowitz.1976). Массовая поп-психологическая литература как материальный носитель имморализма Среди психологов и философов сегодня популярна теория деятельностного подхода к человеку. Ее представители полагают, что знание о человеке не остается чем-то внешним для человека, изучающего его. Оно...

Падших, извращенных понятий. Тем не менее, поскольку эмпирические исследования и практические процедуры, причисляемые к христианской психологии, продолжают развиваться и расширяться, необходимо периодически проводить методологический анализ достигнутого состояния новой дисциплины. Методология как рефлексивный механизм науки, особенно современная, весьма гибкая общая методология, специально...

Условием необходимым, но отнюдь не достаточным для успешной практической работы. Практическая работа тоже может быть разной. Когда я начинаю говорить студентам о психологии личности, я говорю, что можно говорить о психологии личности, а можно говорить о личности, есть два разных дискурса, если воспользоваться модным нынче словом. В одной логике я могу рассказывать про то, как строится область...

Не столько к научно-теоретическому, логическому мышлению, в значительной мере формализующему психологическую информацию, сколько к мышлению ассоциативному, образному, символическому, созерцательному. При обучении психологии, как нам кажется, не столько объясняют, обобщают и заучивают, сколько улавливают, вчувствуются и выстраивают (моделируют) уже отработанные другими ходы понимания и стратегии...



Поделиться