1 51 в сильный окислитель. Что такое окислитель и как его используют. При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов

Многие женщины любят регулярно обновлять цвет волос. Кроме классической краски необходимо пользоваться окислителем. Это позволит получить насыщенный оттенок. Что такое окислитель? Средство необходимо, чтобы краска воздействовала на волосы и они обретали желаемый тон. Без использования окислителя не получится отличный результат.

Самым важным веществом является перекись водорода, содержание которого в окислителе может быть разным. Обычно этот показатель равен 1,8-12%. Если компонент находится в количестве до 2%, то косметика является щадящей. Краска не выполнит длительное окрашивание.

Виды окислителей

Разливается несколько окислителей, содержащих 3, 6 и 9%. Средства относят к ряду классических:

  • С 3% получится окрасить волосы в естественный оттенок, немного осветлить или затемнить.
  • 6% перекиси позволит изменить цвет волос на 2 тона, а также закрасить седину, рыжий тон.
  • Что такое окислитель с 9%? Со средством можно закрасить жесткие волосы, их седину, получается насыщенный цвет.

На каждой упаковке указано, сколько перекиси водорода. Но не стоит абсолютно полагаться на эти данные, поскольку эффект может быть разным. Окислитель применяется и для смывания краски, если оттенок получился непривлекательным.

Средство для смывания краски

Что такое окислитель для смывания? Это такое же средство, только позволяет убрать некрасивый цвет. Концентрация состава для смывания равна больше 12%. Средство наносится на локоны расческой, а через установленное по процедуре время можно промывать их шампунем.

Часто такую процедуру выполнять не стоит, чтобы не повредить волосы. Окислитель для краски способен сделать пряди сухими. После окрашивания нужно воспользоваться бальзамом, который обладает смягчающим действием.

Пропорции

Важно знать не только то, что такое окислитель, но и как его используют. Обычно на упаковке краски обозначено, в каких соотношениях надо смешивать компоненты. Если окислитель для волос продается отдельно, то на тубе будут указаны правила применения. Если требуется яркий цвет, то необходимо смешивание в одинаковых пропорциях. Количество компонентов зависит от вида средства.

Не следует нарушать пропорции, иначе это может привести к негативному результату. Когда окислитель содержится в меньшем количестве, то цвет не получится насыщенным. Это не позволит скрыть седину. Много краски приводит к тому, что волосы становятся жесткими. А восстановление длится достаточно долго. Без окислителя тоже не стоит использовать краску, поскольку она не воздействует.

Правила разведения

Во время процедуры важно не навредить локонам. А если они и до этого были ослабленными, то потребуется много сеансов восстановления. Чтобы сделать все правильно, необходимо грамотно мешать проявитель и краску. Сначала следует ознакомиться с прилагающимися инструкциями.

Если в краске есть масляные компоненты, то важно учитывать, что такие средства не могут использоваться с перекисью. С применением профессиональных красок надо выполнить проверку кожи на аллергию. Готовое средство надо нанести на запястье, а затем посмотреть на реакцию. В случае сворачивания этот состав не подходит.

Окислитель "Эстель" имеет в комплекте подробную инструкцию, поэтому получится качественное средство. Для смешивания компонентов желательно пользоваться пластмассовой, керамической или стеклянной емкостью. Сначала добавляется окислитель, а потом краска. Компоненты надо тщательно смешать, чтобы получилась однородная масса. Лучше воспользоваться специальной кистью.

Чтобы получилась качественная масса для окрашивания, нужно использовать средства одной фирмы. Если все сделать правильно, то получится насыщенный цвет. Добавлять другие компоненты тоже не стоит, поскольку результат этого непредсказуем.

Окислитель для краски для волос желательно брать с содержанием перекиси в количестве 6-7,5%. Следует выбрать 2 пачки краски, если локоны длинные. Не нужно жалеть, ведь только тогда получится насыщенный тон. Но самый яркий цвет будет в том случае, если состав будет содержать окислитель и аммиак.

Особенности выбора

Необходимо покупать средства одной фирмы, поскольку так получится качественный результат. Правильно рассчитав пропорции, вы угадаете, и волосы обретут желаемый оттенок. Средства разных производителей могут принести неожиданный результат. Можно приобрести компоненты в комплекте или по отдельности.

Необходимо проверить, подходит ли цвет. Он может немного отличаться от того, который указан на упаковке. Важно узнать срок годности, поскольку просроченный продукт не принесет нужного результата. Тем более что он может повредить волосы.

Желательно брать средства проверенных марок, которые используются неоднократно. Для процедуры надо приобрести специальные инструменты, если их нет в комплекте. У средства должна быть сохранена целостность упаковки.

Стоимость и виды фирм

Цена компонентов находится в пределах 300-500 рублей. Производители, выпускающие краску в комплекте, продают компоненты и по отдельности. Некоторым женщинам это удобно. Одного средства нередко хватает на 2 процедуры.

В продаже есть "Матрикс". С этим средством не получится насыщенный тон, поэтому его используют для поддержания оттенка. Матрикс не подойдет для закрашивания седины. Есть профессиональная краска "Селектив", имеющая богатую палитру. Краска "Эстель" тоже относится к числу качественных.

Желательно покупать продукцию профессиональных брендов. В этом случае у волос сохраняется естественная структура, и поэтому они повреждаются немного. Окислитель "Матрикс" стоит около 700 рублей, а "Кутрин" - 500. Правильно выбранное средство позволит прекрасно обновить цвет волос.

Прежде чем определять самые сильные окислители, постараемся выяснить теоретические вопросы, касающиеся данной темы.

Определение

В химии под окислителем подразумевают нейтральные атомы либо заряженные частицы, которые в взаимодействия принимают от других частиц электроны.

Примеры окислителей

Для того чтобы определить самые сильные окислители, необходимо отметить, что данный показатель зависит от степени окисления. Например, в перманганате калия у марганца она составляет +7, то есть является максимальной.

Данное соединение, более известное как марганцовка, проявляет типичные окислительные свойства. Именно можно использовать в органической химии для проведения качественных реакций на кратную связь.

Определяя самые сильные окислители, остановимся на азотной кислоте. Ее по праву называют царицей кислот, ведь именно это соединение даже в разбавленном виде способно вступать во взаимодействие с металлами, расположенными в электрохимическом ряду напряжений металлов после водорода.

Рассматривая самые сильные окислители, нельзя оставить без внимания соединения хрома. Соли хрома считаются одними из самых ярких окислителей, их используют в качественном анализе.

Группы окислителей

В качестве окислителей можно рассматривать и нейтральные молекулы, и заряженные частицы (ионы). Если анализировать атомы химических элементов, проявляющие подобные свойства, то необходимо, чтобы на у них содержалось от четырех до семи электронов.

Подразумевается, что именно p-элементы проявляют яркие окислительные характеристики, а к ним относятся типичные неметаллы.

Самым сильным окислителем является фтор, представитель подгруппы галогенов.

Среди слабых окислителей можно рассмотреть представителей четвертой группы таблицы Менделеева. Наблюдается закономерное уменьшение окислительных свойств в главных подгруппах при возрастании радиуса атома.

Учитывая подобную закономерность, можно отметить, что минимальные окислительные свойства проявляет свинец.

Самый сильный неметалл-окислитель - который не способен отдавать электроны другим атомам.

Такие элементы, как хром, марганец, в зависимости от среды, в которой протекает химическое взаимодействие, могут проявлять не только окислительные, но и восстановительные свойства.

Они могут менять свою степень окисления с меньшей величины на большую, отдавая для этого электроны другим атомам (ионам).

Ионы всех благородных металлов даже в минимальной степени окисления проявляют яркие окислительные свойства, активно вступая в химическое взаимодействие.

Говоря о сильных окислителях, неправильно будет оставить без внимания молекулярный кислород. Именно эта двухатомная молекула считается одним из самых доступных и распространенных видов окислителей, поэтому достаточно широко применяется в органическом синтезе. Например, при наличии окислителя в виде молекулярного кислорода можно превратить этанол в этаналь, что необходимо для последующего синтеза уксусной кислоты. С помощью окисления можно получить из природного газа даже органический спирт (метанол).

Заключение

Окислительно-восстановительные процессы имеют важное значение не только для проведения каких-то превращений в химической лаборатории, но и для промышленных производств различных органических и неорганических продуктов. Именно поэтому так важно правильно подбирать окислители, чтобы повысить эффективность протекания реакции, увеличить выход продукта взаимодействия.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений, называются окислительно-восстановительными. Под степенью окисления (с.о.) понимают заряд элемента в соединении, вычисленный, исходя из предположения , что соединение состоит из ионов .

Степень окисления элемента в простом веществе, например в Zn, Сa, H 2 , Вг 2 , S, O 2 , равна нулю.

Определение степени окисления элемента в соединении проводят, используя следующие положения:

1. Степень окисления кислорода в соединениях обычно равна –2. Исключения составляют пероксиды H 2 +1 O 2 –1 , Na 2 +1 O 2 –1 и фторид кислорода О +2 F 2 .

2. Степень окисления водорода в большинстве соединений равна +1, за исключением солеобразных гидридов, например, Na +1 H -1 .

3. Постоянную степень окисления имеют металлы IА группы (щелочные металлы) (+1); металлы IIА группы (бериллий, магний и щелочноземельные металлы (+2)); фтор (–1).

4. Алгебраическая сумма степеней окисления элементов в нейтральной молекуле равна нулю, в сложном ионе – заряду иона.

В качестве примера рассчитаем степень окисления марганца в соединении К 2 MnO 4 и в анионе (MnO 4) − . Сначала поставим степень окисления над теми элементами, для которых она известна. В нашем примере постоянную степень окисления имеют калий (+1) и кислород (-2). Степень окисления марганца обозначим через х . Далее составляем алгебраическое уравнение. Для этого индекс при каждом элементе умножаем на степень окисления этого элемента, все складываем и приравниваем правую часть нулю:

К 2 +1 Mn х O 4 –2 2∙(+1)+ x + 4 (–2) = 0 x = + 6

Таким образом, степень окисления хрома в К 2 MnO 4 равна +6.

Чтобы определить степень окисления марганца в анионе (MnO 4) ‾ поступаем точно также, только правую часть приравниваем заряду иона, в нашем случае -1

(Mn х O 4 −2) ‾ x + 4 (–2) = –1 x = + 7.

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим.Окисление процесс отдачи электронов , сопровождающийся повышением степени окисления элемента. Восстановление – процесс присоединения электронов, сопровождающийся понижением степени окисления элемента. Окисление и восстановление – взаимосвязанные процессы, протекающие одновременно. Окислителями называют вещества (атомы, молекулы или ионы), которые в процессе реакции присоединяют электроны , восстановителями вещества, отдающие электроны.

Ca 0 + Cl 2 0 = Ca +2 Cl 2 –1

восстановитель Ca 0 –2ē → Ca +2 окисление

окислитель Cl 2 0 +2ē → 2Cl – восстановление.

Окислителями могут быть:


1. Простые вещества - неметаллы: галогены F 2 ,Cl 2 , Br 2 , I 2 , кислород O 2 , сера S.

2. Положительно заряженные ионы металлов Fe 3+ , Au 3+ , Hg 2+ , Cu 2+ , Ag + .

3. Сложные ионы и молекулы, содержащие атомы металла в высшей степени окисления KMn +7 O 4 , K 2 Cr 2 +6 O 7 , NaBi +5 O 3 и др.

4. Атомы неметаллов в положительной степени окисления HN +5 O 3 , концентрированная H 2 S +4 O 4 , HCl +1 O, KCl +5 O 3 , NaBr +1 O и др.).

Типичными восстановителями являются:

1. Простые вещества - металлы. У металлов на внешнем уровне находится 1, 2, 3 электрона, которые они легко отдают М 0 −nē → М n + ,

где n – число отданных электронов, равное 1, 2, 3, М – металл (Na, Ca, Mg, Al и др.)

2. Простые вещества - неметаллы (углерод, водород, кремний, бор).

3. Отрицательно заряженные ионы неметаллов (S 2- , I - , Br - , Cl - и др.).

4. Положительно заряженные ионы металлов в низшей степени окисления (Sn 2+ , Fe 2+ , Cr 2+ , Mn 2+ , Cu + и др.).

Соединения, содержащие элементы в максимальной и минимальной степенях окисления, могут быть соответственно или только окислителями (KMnO 4 , K 2 Cr 2 O 7 , HNO 3 , H 2 SO 4 , PbO 2), или только восстановителями (KI, Na 2 S, NH 3). Если же вещество содержит элемент в промежуточной степени окисления, то в зависимости от условий проведения реакции оно может быть и окислителем, и восстановителем. Например, нитрит калия KNO 2 , содержащий азот в степени окисления +3, пероксид водорода H 2 O 2 , содержащий кислород в степени окисления -1, в присутствии сильных окислителей проявляют восстановительные свойства, а при взаимодействии с активными восстановителями являются окислителями.

Окислительно-восстановительные реакции, или сокращенно ОВР, являются одной из основ предмета химии, так как описывают взаимодействие отдельных химических элементов друг с другом. Как следует из названия данных реакций, в них участвуют как минимум два различных химических вещества одно из которых выступает в качестве окислителя, а другое – восстановителя. Очевидно, что очень важно уметь отличать и определять их в различных химических реакциях.

Как определить окислитель и восстановитель
Основная сложность в определении окислителя и восстановителя в химических реакциях заключается в том, что одни и те же вещества в разных случаях могут быть как окислителями, так и восстановителями. Чтобы научиться правильно определять роль конкретного химического элемента в реакции нужно четко уяснить следующие базовые понятия.
  1. Окислением называют процесс отдачи электронов с внешнего электронного слоя химического элемента. В свою очередь окислителем будет атом, молекула или ион, которые принимают электроны и тем самым понижают степень своего окисления, что есть восстанавливаются . После химической реакции взаимодействия с другим веществом окислитель всегда приобретает положительный заряд.
  2. Восстановлением называют процесс присоединения электронов на внешний электронный слой химического элемента. Восстановителем будет атом, молекула или ион, которые отдают свои электроны и тем самым повышают степень своего окисления, то есть окисляются . После химической реакции взаимодействия с другим веществом восстановитель всегда приобретает положительный заряд.
  3. Проще говоря окислитель – это вещество, которое «отбирает» электроны, а восстановитель – вещество, которое отдает их окислителю. Определить кто в окислительно-восстановительной реакции выполняет роль окислителя, кто восстановителя и в каких случаях окислитель становится восстановителем и наоборот можно, зная типичное поведение в химических реакциях отдельных элементов.
  4. Типичными восстановителями являются металлы и водород: Fe, K, Ca, Cu, Mg, Na, Zn, H). Чем меньше они ионизироаны, тем больше их восстановительные свойства. Например, частично окислившееся железо, отдавшее один электрон и имеющее заряд +1, сможет отдать на один электрон меньше по сравнению с «чистым» железом. Также восстановителями могут быть соединения химических элементов в низшей степени окисления, у которых заполнены все свободные орбитали и которые могут только отдавать электроны, например аммиак NH 3 , сероводород H 2 S, бромоводород HBr, йодоводород HI, хлороводород HCl.
  5. Типичными окислителями являются многие неметаллы (F, Cl, I, O, Br). Также окислителями могут выступать металлы, имеющие высокую степень окисления (Fe +3 , Sn +4 , Mn +4), также некоторые соединения элементов в высокой степени окисления: перманганат калия KMnO 4 , серная кислота Н 2 SO 4 , азотная кислота HNO 3 , оксид меди CuO, хлорид железа FeCl 3 .
  6. Химические соединения в неполных или промежуточных степенях окисления, например одноосновная азотная кислота HNO 2 , пероксид водорода H 2 O 2 , сернистая кислота H 2 SO 3 могут проявлять как окислительные, так и восстановительные свойства в зависимости от окислительно-восстановительных свойств участвующего во взаимодействии второго реагента.
Определим окислитель и восстановитель на примере простой реакции взаимодействия взаимодействия натрия с кислородом.

Ка следует из данного примера один атом натрия отдает одному атому кислорода свой электрон. Следовательно, натрий является восстановителем, а кислород окислителем. При этом натрий окислится полностью, так как отдаст максимально возможное количество электронов, а атом кислорода будет восстановлен не полностью, так как сможет принять еще один электрон от другого атома кислорода.

окислитель для волос, окислитель thuya
Окисли́тель - вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель - это акцептор электронов.

В зависимости от поставленной задачи (окисление в жидкой или в газообразной фазе, окисление на поверхности) в качестве окислителя могут быть использованы самые разные вещества.

  • Электрохимическое окисление позволяет окислять практически любые вещества на аноде, в растворах или в расплавах. Так, самый сильный неорганический окислитель, элементарный фтор, получают электролизом расплавов фторидов.
  • 1 Распространённые окислители и их продукты
  • 2 Мнемонические правила
  • 3 Зависимость степени окисления от концентрации окислителя
  • 4 Сильные окислители
  • 5 Очень сильные окислители
  • 6 См. также

Распространённые окислители и их продукты

Полуреакции Продукт Стандартный потенциал, В
O2 кислород Разные, включая оксиды, H2O и CO2 +1,229 (в кислой среде)

0,401 (в щелочной среде)

O3 озон Разные, включая кетоны и альдегиды
Пероксиды Разные, включая оксиды, окисляет сульфиды металлов до сульфатов H2O
Hal2 галогены Hal−; окисляет металлы, P, C, S, Si до галогенидов F2: +2,87

Cl2: +1,36
Br2: +1,04
I2: +0,536

ClO− гипохлориты Cl−
ClO3− хлораты Cl−
HNO3 азотная кислота с активными металлами, разбавленная

с активными металлами, концентрированная

с тяжёлыми металлами, разбавленная

c тяжёлыми металлами, концентрированная

H2SO4, конц. серная кислота c неметаллами и тяжёлыми металлами

с активными металлами

SO2; окисляет металлы до сульфатов с выделением сернистого газа или серы

Шестивалентный хром Cr3+ +1,33
MnO2 оксид марганца(IV) Mn2+ +1,23
MnO4− перманганаты кислая среда

нейтральная среда

сильнощелочная среда

Mn2+ +1,51
Катионы металлов и H+ Me0 См. Электрохимический ряд активности металлов

Мнемонические правила

Для запоминания свойств окислителей и восстановителей существует несколько мнемонических правил:

  1. Окислитель - грабитель (в процессе окислительно-восстановительной реакции окислитель присоединяет электроны).
  2. Ассоциация со знакомым словом: ПВО - Присоединяет (электроны), Восстанавливается, является Окислителем.
  3. Отдает - окисляется, сам восстановителем является.

Зависимость степени окисления от концентрации окислителя

Чем активнее металл, реагирующий с кислотой, и чем более разбавлен её раствор, тем полнее протекает восстановление. качестве примера - реакция азотной кислоты с цинком:

  • Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2 + 2H2O
  • 3Zn + 8HNO3(40 %) = 3Zn(NO3)2 + 2NO + 4H2O
  • 4Zn + 10HNO3(20 %) = 4Zn(NO3)2 + N2O + 5H2O
  • 5Zn + 12HNO3(6 %) = 5Zn(NO3)2 + N2 + 6H2O
  • 4Zn + 10HNO3(0.5 %) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Сильные окислители

Сильными окислительными свойствами обладает «царская водка» - смесь одного объема азотной кислоты и трёх объёмов соляной кислоты.

HNO3 + 3HCl ↔ NOCl + 2Cl + 2H2O

Образующийся в нём хлористый нитрозил распадается на атомарный хлор и монооксид азота:

Царская водка является сильным окислителем благодаря атомарному хлору, который образуется в растворе. Царская водка окисляет даже благородные металлы - золото и платину.

Ещё один сильный окислитель - перманганат калия. Он способен окислять органические вещества и даже разрывать углеродные цепи:

С6H5-CH2-CH3 + → C6H5COOH + … C6H6 + → HOOC-(CH2)4-COOH

Сила окислителя при реакции в разбавленном водном растворе может быть выражена стандартным электродным потенциалом: чем выше потенциал, тем сильнее окислитель.

Очень сильные окислители

Условно к «очень сильным окислителям» относят вещества, превышающие по окислительной активности молекулярный фтор. К ним, например, относятся: гексафторид платины, диоксидифторид, дифторид криптона, гексафтороникелат(IV) калия. Перечисленные вещества, к примеру, способны при комнатной температуре окислять инертный газ ксенон, что неспособен делать фтор (требуется давление и нагрев) и тем более ни один из кислородсодержащих окислителей.

См. также

  • Окислительно-восстановительные реакции

окислитель thuya, окислитель для волос, окислитель сенко, окислитель это, окислительная башня, окислительное число, окислительные ферменты, окислительный стресс

Окислитель Информацию О



Поделиться