Молниезащита 2 категории металлическая крыша. Категории молниезащиты. Основные характеристики грозовой деятельности и разрядов молнии

Молниезащитой называют совокупность мероприятий, направленных на снижение материального ущерба и травматизма людей от ударов молний.

Устройство молниезащиты на крыше

Опасности от удара молнии:

  • полное или частичное разрушение сооружений и зданий, инженерных сетей;
  • выход из строя электроприборов, находящихся в зоне поражения молнии;
  • травматизм и гибель живых организмов, оказавшихся внутри или поблизости с сооружением, в которое ударила молния.

Что такое молния?

Молнии представляют большую опасность как для человека, так и для зданий и сооружений. Молнии – электрические разряды большой мощности, которые при попадании могут разрушить конструкции, вывести из строя электроприборы и линии электропередачи. При возведении качественно выполненных молниеотводов, сокращается количество травматизма и разрушений сооружений и инженерных сетей. Природа молнии такова, что по достижении нижних слоев атмосферы удар приходится на самую высокую точку в радиусе опасной зоны.

Главным условием образования грозовых облаков является быстрое изменение температуры и высокая влажность. При таких условиях в атмосфере появляются отрицательно заряженные скопления облаков. Вследствие электростатической индукции на движущееся заряженное облако в атмосфере образуются разряды. Т.е. условно оно является конденсатором, а расстояние между облаком и поверхностью земли является промежутком между пластинами. С течением времени увеличивается напряженность электрического поля, а высокие сооружения (деревья), ионизируя воздух, уменьшают удельное сопротивление и провоцируют удары молнии на землю.

Благодаря этому свойству разработаны конструкции, которые способны принять удар на себя и отвести опасный потенциал в землю без повреждений и пожаров. Нормативы для проектирования и монтажа грозозащиты: ПУЭ, инструкция РД 34.21.122-87, ГОСТ Р МЭК 62561.2-2014, СНиП 3.05.06-85. Молниеотводы – обязательная мера защиты от ударов молнии, если здание расположено не в городской высотной застройке, если рядом имеется водоем и др.

Поражающие факторы молнии

  1. Первичный. Характеризуется тепловым и механическим воздействием. Прямое попадание молнии в здание или линию электропередачи, вследствие чего возникает вероятность возникновения пожара. Без дополнительного оснащения защититься от первичного фактора невозможно. Необходимо устройство молниезащиты.

Действие молний: расплавление металлических сооружений (толщиной менее 4 мм), частичное или полное разрушение строений из бетона, кирпича и камня (вследствие механического воздействия). Быстрый нагрев конструкций вызывает в них напряжения, провоцируя взрывы (инструкция РД 34.21.122-87).

  1. Вторичный. При попадании разряда в близко расположенные сооружения в электросети появляется электромагнитная индукция, способная вывести из строя электроприборы. Для защиты от вторичного фактора достаточно отсоединить от сети все электронные устройства. Данный фактор невозможен без проявления первичного влияния (инструкция РД 21.122-87).

Проявляется в виде:

  • электростатической индукции, выраженной искрениями между металлическими поверхностями конструкций, электроприборов. Вызывается статическими зарядами облаков на наземные сооружения;
  • электромагнитной индукции. Возникает при разряде молнии из-за изменяющегося магнитного поля. Индукция вызывает нагрев замкнутых контуров, сопровождается неопасным для оборудования и людей нагревом.

Т.к. молния – электрический заряд, движение его происходит по пути наименьшего сопротивления. Защита от ударов молнии должна эффективно отводить заряды в землю. При попадании молнии в молниеотводы, ток уходит в землю, не причиняя урон зданиям внутри и вне зоны действия защиты.

Тип молниезащиты зависит от типа здания, электроприборов, типа заземления электросети, частоты гроз в выбранном климатическом районе.

Тросовая молниезащита здания

Здания и сооружения по необходимости возведения грозозащиты разделяют на категории:

  1. Категория 1. В зданиях взрыво,- и пожароопасные вещества не хранятся постоянно, Происходит процесс переработки и хранение опасных веществ открыто или в неупакованных емкостях. Возникновение взрывов в таких сооружениях сопровождается значительными разрушениями и человеческими жертвами (РД).
  2. Категория 2. В зданиях опасные вещества хранятся в запакованных емкостях. Взрывоопасные смеси образуются только в случае производственных аварий. Взрыв сопровождается незначительными разрушениями, без человеческих жертв (РД).
  3. Категория 3. Прямое попадание молнии вызывает пожары, разрушения большой степени строений и инженерных сетей, поражения людей и животных. Такие здания должны иметь эффективную защиту от прямых ударов молнии (РД).

Варианты защиты

  1. Активная. Новый вид защиты от ударов молнии. Искусственно притягивает разряды к себе при помощи встроенного ионизатора (РД).

Активная защита от ударов молнии

Преимущества:

  • 100% работоспособность;
  • исключение появления вторичного фактора поражения молнией.

Недостатки:

  • Стоимость.
  1. Пассивные молниеотводы. Особенность работы состоит в том, что попадание молнии в нее происходит не во всех случаях.

Недостатки:

  • срабатывает не во всех случаях.

Преимущества:

  • высокая надежность;
  • низкая стоимость работ;
  • возможность сооружения вручную.

Вид защиты (РД и ГОСТ Р МЭК 62561.2-2014)

Внешний тип

Защищает строения от первичного фактора воздействия молнии – от разрушений и пожаров. Позволяет перехватить разряды, и отвести удар в землю.

Во время удара молнии молниеотводы принимают на себя ток и по системе отводят его в землю, где энергия полностью рассеивается.

Внешняя молниезащита строения

Требования к молниезащите – при правильном проектировании и монтаже системы обеспечивается полная безопасность снаружи и внутри здания.

Виды внешней защиты (инструкция РД 34.21.122-87):

  • сетчатый молниеприемник;
  • молниеприемный стержень;
  • натянутый молниеприемный трос.

Тросовая конструкция для защиты от ударов молнии

Составные части грозозащиты (РД и ГОСТ Р МЭК 62561.2-2014):

  1. Молниеотводы – сооружения, которые перехватывают разряд. Изготавливаются из металла, как правило, нержавеющей стали, меди или алюминия.
  2. Спуски (токоотводы) – металлические выпуски, по которым разряд отводится от молниеприемника к заземлителю.
  3. Заземлитель – защитное устройство заземления, состоящее из токопроводящих материалов, которые находятся в контакте с землей. Имеет наружную и подземную часть (контур заземления).

Внутренний тип

Предохраняет дома от вторичного фактора воздействия электротока. Состоит из ряда устройств защиты от импульсных перенапряжений (УЗИП). Целью приборов является предотвратить выход из строя бытовых электроприборов от перенапряжений в электросети, которые вызваны ударами молний.

Перенапряжения могут быть вызваны прямыми (при попадании молнии в здание или питающую линию электропередачи) и непрямыми (ударами в непосредственной близости сооружений или ЛЭП) разрядами молнии.

По типу попадания различают несколько видов перенапряжений:

  • 1 тип. Вызваны прямыми ударами, представляют собой наибольшую опасность.
  • 2 тип. Вызваны непрямыми ударами тока, запасенная энергия в 20 раз ниже, чем в перенапряжениях 1 типа.

Типы УЗИП по ГОСТ Р 50571.26-2002

  • 1 тип. Способен выдержать токовые нагрузки полностью от полученного разряда молнии. УЗИП 1 типа рекомендованы к установке в сельской местности с воздушными линиями электропередачи в зданиях с громоотводами, в отдельно стоящих строениях, расположенных в непосредственной близости к высоким объектам.
  • 2 тип. Применяется совместно с 1 типом. Аппараты не способны выдержать удары молнии. Допустимый бросок напряжения составляет 1,5..1,7кВ.
  • 3 тип. УЗИП 3 типа применяется после защиты 1 и 2 ступени. Предназначены для установки у потребителя: сетевые фильтры, устройства автоматики на бытовых электроприборах (котлах и др.).

УЗИП устанавливаются совместно с автоматическими выключателями для предотвращения прогорания и возникновения пожара в электрощитке. Длительные перенапряжения могут вывести УЗИП из строя.

Вводные автоматы с номинальным рабочим током меньше 25А могут выступать в качестве защиты УЗИП (ГОСТ Р 50571.26-2002).

Подключение молниезащиты выполняется по двум схемам:

  1. С приоритетом безопасности. УЗИП не разрушается, молниезащита работает бесперебойно. При ударе молнии полностью отключает потребителей.
  2. С приоритетом бесперебойности. В этом случае отключение потребителей недопустимо, при ударе молнии отключается молниезащита.

При установке устройств следует выдерживать минимально допустимое расстояние 10м, что обеспечивает необходимую индуктивность для срабатывания автомата большей ступени.

Устройство защиты от импульсных перенапряжений 1 типа

Возможна совместная установка УЗИП 1 и 2 ступени в одном корпусе (ГОСТ Р 50571.26-2002). Для каждой системы заземления УЗИП разработаны соответствующего исполнения.

Молниеприемник стержневой

Устанавливается на крыше зданий так, чтобы конструкции была выше всех остальных точек. Для поддержания эстетики внешнего вида дома, молниеприемник следует установить на отдельно стоящей опоре (дереве).

В качестве молниеприемника (согласно ПУЭ) используют: угловую сталь 50х50, сталь круглую сечением более 25мм 2 .

В качестве громоотвода также допустимо использовать металлическую трубу диаметром 40..50 мм с заваренными с двух концов срезами.

Количество грозоотводов выбирают по расчету в зависимости от размера сооружения. Для домов площадью менее 200 м 2 достаточно одной конструкции. Для зданий площадью более 200 м 2 необходима установка двух стержней, расстояние между которыми не должно превышать 10 м. Во избежание протекания тока в дом стержень закрепляют на крыше изолирующими материалами, например, деревянными брусками и др.

Земляные работы при устройстве молниезащиты

Тросовые молниеприемники

Применяются для защиты зданий и сооружений большой длины и высоковольтных ЛЭП, т.е. для узких, длинных сооружений.

Основным элементом является металлический трос, который подвешивается по всей длине крыши. Закрепляется на деревянных опорах так, чтобы не было соприкосновений с поверхностью крыши. Со всех сторон здания сооружаются токоотводы в количестве не менее 2.

Для молниеотводов используют оцинкованный стальной канат ТК с необходимым расчетным сечением, но не менее 35 мм 2 . Проектирование молниеотводов из троса выполняется с учетом района по гололеду и требованиям ПУЭ. Зона действия этого типа молниеотвода имеет вид трехгранной призмы, верхней гранью которой будет натянутый трос на крыше зданий. Ели крыша имеет большой укос или несколько сооружений разной высоты, необходима установка стержневых молниеотводов ввиду уменьшения финансовых затрат.

В случае стержневых и тросовых молниеотводов расстояние от ближайших сооружений должно быть не менее 15 м либо установка предполагается на разных сторонах здания.

Сетчатые громоотводы

Изготавливают из стальной (алюминиевой) проволоки сечением 6мм в виде ячеек площадью не более 150 мм 2 так, чтобы сетка не имела точек соприкосновения с крышей (6..8 см от поверхности). Сетка натягивается по всей площади крыши по изолированным опорам, с суммарным размером не менее 6х6м. Токоотводы прокладываются по углам здания на каждые 25 м периметра.

В защитную площадь молниеотводов должны попадать все выступающие части сооружения. Все вентиляционные и газоотводящие трубы должны входить в зону действия грозозащиты, при условии их обязательной защиты специальными конструкциями.

Отдельно стоящие молниеотводы применяют в следующих случаях:

  • необходимо защитить одной конструкцией несколько зданий;
  • невозможно обустроить молниеотводы на крыше.

Металлические громоотводы применяются для защиты зданий высотой более 30 м.

Токоотводы

Задачей токоотводов является эффективное отведение заряда от молниеотвода к конструкции заземления.

В качестве токоотводов применяют стальную проволоку диаметром 6мм, металлическую ленту со стенкой не менее 2мм и шириной 30мм.

При условии, что стены не содержат токопроводящие элементы, токоотводы закрепляют вдоль стены в любом месте, при соблюдении габарита сближения с дверями и окнами. Для закрепления конструкции используют болтовое соединение и сварку.

Количество токоприемников принимают, исходя из количества молниеотводов. Для стержневых принимают равным количеству стержней, для сеточных и тросовых минимальное количество составляет не менее 2.

Заземление

Сооружается один контур с общим заземлителем электросети. Простейшей конструкцией является треугольный контур заземления. Вершины – вертикальные электроды, забитые в землю на глубину 3м. Оптимальное расстояние между вершинами составляет 3м.

Горизонтальный заземлитель (соединение вершин треугольника в единую конструкцию) закладывается на глубину не менее 0,5м. Соединение выполняется исключительно сваркой.

Монтаж молниезащиты

Для частных домов чаще всего сооружают пассивную стержневую молниезащиту.

Подготовительные работы:

  • В первую очередь необходимо провести все замеры: ширина, высота дома, предполагаемый радиус защиты (для стержневых молниеприемников).
  • После этого необходимо определиться с высотой молниеприемника, методом его закрепления.
  • Длина токоотвода рассчитывается после определения точки установки молниеотвода. Путь от точки приема удара до заземления должен быть наикратчайшим, поэтому проектирование сложных конструкций не рекомендовано, соединения в виде кольца запрещены.
  • Элемент заземления, согласно ПУЭ и СНиП, должен быть расположен на расстоянии не менее 1м от стены здания, не должен пересекать пешеходные дорожки и крыльцо.

После проведения точных расчетов длины и конструкции заземления необходимо приступать непосредственно к строительно-монтажным работам.

Устройство заземлителя:

  • Для заземления используют сталь угловую 50х50 (ГОСТ 8509-93) или полосовую сталь 40х4 (ГОСТ 103-76). Также может применяться круглая сталь.
  • Контур заземления выполняется в виде многоугольника, в вершины которого забиваются вертикальные электроды длиной не менее 2м. Полосовой сталью сваркой соединяют вершины треугольника в единую металлоконструкцию.

Установка молниеприемника:

  • На крыше здания устанавливаются деревянные опоры, установка на которые полностью исключает контакт стержня с крышей здания.

Монтаж токоотвода:

  • Последним этапом является установка токоотвода и соединение всех элементов молниезащиты. Токоотводы крепят на специальные конструкции – коньки, которые также исключают контакт с поверхностью дома.
  • После завершения земляных и строительно-монтажных работ необходимо произвести замеры сопротивления молниеотвода и соответствия полученных значений расчетным.
  • Для деревянных домов процесс сооружения системы молниеотвода аналогичен. Все элементы конструкции грозозащиты должны быть удалены от плоскости стены на 150мм.

Молниезащита для деревянных домов

Внутренняя защита зданий и сооружений

УЗИП обеспечивают защиту электрооборудования от импульсных перенапряжений и больших индуктивных нагрузок.

Источники импульсных перенапряжений при грозе:

  • ПУМ (прямые удары молнии) в устройство грозозащиты, удары в рядом устроенные линии электропередачи;
  • удары молнии вблизи объектов.

УЗИП устанавливаются в жилых и административных зданиях, объектах промышленности. Обязательным является включение УЗИП в схему электроснабжения в загородных домах, при одно,- и двухэтажной застройке местности (ГОСТ Р 50571.26-2002).

Преимущества использования УЗИП:

  • надежная защита от импульсных перенапряжений;
  • низкая стоимость устройств.

Принцип работы устройств основан на нелинейности вольтамперной характеристики. При значительном увеличении напряжения варистор сохраняет возможность пропускать электроток.

Приборы выходят из строя после нескольких срабатываний защиты. Необходимо проверять УЗИП после каждого рабочего цикла.

В схему перед УЗИП включают предохранители для защиты от сверхмощных токов.

В сетях до 1кВ предусматривают три ступени защиты от перенапряжений :

  1. УЗИП 1 ступени. Класс B. Рассчитаны на токовые броски до 100кА. Устанавливаются в подготовленных металлических шкафах в вводно-распределительном устройстве или на главном электрощите.
  2. УЗИП 2 ступени. Класс C. Амплитуда импульсных токов составляет 15..20кА. Применяются в зонах, полностью защищенных от прямых попаданий молний. Установка предусмотрена в распределительных щитках на вводах в здания и помещения.
  3. УЗИП 3 ступени. Класс D. Предназначены для защиты оборудования от остаточных токов перенапряжения. Установка предусмотрена непосредственно перед электроприборами, минимально допустимое расстояние – 5м.

Параметры выбора УЗИП по ГОСТ Р 50571.26-2002:

  • номинальное напряжение сети;
  • длительно допустимое рабочее напряжение защитного аппарата – наибольшее напряжение, которое может быть приложено до времени срабатывания защиты;
  • ток утечки варистора;
  • время срабатывания защиты;
  • ток импульса;
  • максимальное значение напряжения при протекании тока через УЗИП;
  • классификационное напряжение;
  • максимальный импульсный разрядный ток – максимальная токовая нагрузка, при прохождении которой устройство остается рабочим.

Выдержка расстояний между устройствами необходима для гарантии временной задержки и обеспечения импульса для срабатывания следующей ступени защиты:

  • между УЗИП 1 и 2 степени – не менее 10м;
  • между УЗИП 2 и 3 ступени – не менее 5м;
  • между УЗИП 3 класса (между собой) – не менее 1м.

Каждое УЗИП должно быть присоединено к заземляющему устройству отдельным проводником.

УЗИП 3 ступени защищает приборы на расстоянии до 10 м. При необходимости защитить сеть далее, требуется установка следующего аппарата.

Для надежной защиты зданий и сооружений необходимо использовать внутреннюю и внешнюю защиту от молний. Устройства защиты от импульсных перенапряжений не будут выполнять свои функции, если отсутствуют эффективно действующие молниеотводы.

Видео про молниезащиту

Для загородных домов качественная система молниезащиты крайне важна, т.к. позволяет предотвратить разрушение домов и порчу имущества. Возведение пассивных систем молниезащиты может быть выполнено своими руками, в соответствии с требованиями ПУЭ. Активные защиты требуют высокой квалификации и не могут быть устроены без помощи специалистов.

Организацию молниезащиты зданий и сооружений регулируют ПУЭ 7 (Правила устройства электроустановок в 7-я редакции). Скачайте их, а также инструкцию по оборудованию защиты от молний.

Читайте в нашей статье:

Что устанавливают ПУЭ 7 в части молниезащиты зданий и сооружений

Действующая в данный момент версия ПУЭ была утверждена . Предохранению объектов от воздействия электрического заряда посвящены две главы: 7.3.142-3 и 4.2.133. Первая устанавливает порядок защиты объектов от грозовых разрядов и статического электричества. В ней содержится ссылка на инструкцию РД 34.21.122-87. Глава 4.2.133 посвящена защите электрических подстанций и распределительных устройств от перенапряжений, которые могут быть вызваны ударом молнии.

Виды и устройство защиты от грозовых перенапряжений

Если говорить о классификации устройств защиты от грозовых перенапряжений, то помимо ПУЭ нужно будет ознакомиться со следующими инструкциями и государственными стандартами:

  • РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений»;
  • СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций»;
  • ГОСТ Р МЭК 62305-1-2010 «Менеджмент риска. Защита от молнии. Часть 1»;
  • «Менеджмент риска. Защита от молнии. Часть 2».

Выделяют несколько вариантов молниезащитных систем:

  • Активная, то есть искусственно притягивающая к себе разряды молнии, используя для этого встроенный ионизатор.
  • Пассивная – наиболее распространенная защита. Молния не во всех случаях попадает в такие отводы, но этот недостаток перекрывается низкой стоимостью таких устройств, а также их высокой надежностью.

Также различают внешний и внутренний типы защитных устройств.

К внешним относятся сетчатые молниеприемники, молниеприемные стержни, натянутые молниеприемные тросы. Все они работают по одному принципу, перехватывая разряд и отводя его в грунт. При ударе молнии молниеотвод принимает на себя разряд, по спускам отводит ток в землю, где он полностью рассеивается. Безопасность также обеспечивает заземлитель, состоящий из токопроводящих материалов.

Предохранительные системы внутреннего типа, состоящие из ряда устройств защиты от импульсных перенапряжений (УЗИП), имеют другую функцию. Их задача – защитить бытовые приборы от перенапряжения в электросети, которое может быть вызвано ударом молнии. При этом разряд может попасть как в само здание, так и в непосредственной близости от него или .

Информацию об устройстве таких систем вы найдете в статье «Молниезащита: как устроена и зачем нужна»

Категории молниезащиты зданий

Согласно действующим стандартам, существует три категории молниезащиты зданий и сооружений. Причисление к ним зависит от ряда факторов: значимости объекта, частоты гроз в регионе, зафиксированных попаданий молний в здание.

Промышленные объекты со взрывоопасными зонами получают максимальный уровень защиты – первый. При этом не имеет значения, где именно располагается сооружение, и насколько интенсивными бывают грозы на этой территории. Главное назначение защитных устройств – перехват прямого удара молнии на пути к объекту.

Сюда также включают здания, в которых хранятся взрывоопасные вещества. Это могут быть открытые склады с , наружные технологические установки. Системы молниезащиты на таких объектах должны защищать от прямого попадания разряда, электромагнитной индукции и от заноса потенциалов через коммуникации.

  • Эксплуатация зданий и сооружений – нормативные документы

К этому типу относятся постройки на территориях, где грозы длятся более 20 часов в год. Отводы и заземлители должны предохранять от прямого попадания молнии и от заноса высокого потенциала.

В тех случаях, когда кровля здания служит естественным молниеприемником, а само помещение не содержит взрывоопасных веществ и выполнено из несгораемых материалов, отдельные устройства молниезащиты не потребуются.

Устройство молниезащиты в зависимости от категории (по ПУЭ 7)

Объекты первой категории молниезащиты необходимо оснащать самыми сложными предохранительными системами. Такие здания должны быть оборудованы стоящими отдельно друг от друга тросовыми, либо стержневыми молниеотводами.

В зависимости от типа оборудования нужно подбирать соответствующий заземлитель. Здесь возможно несколько вариантов:

  • Один подножник из железобетона, длина которого не менее 1,8 метров. Вместе с ним одна железобетонная свая, длина которой должна достигать порядка 6 метров.
  • Одна опора диаметром не менее 0,5 м, сделанная из железобетона. При этом ее следует заглубить в землю не менее чем на 6 метров.
  • Фундамент из железобетона, площадь поверхности контакта с землей которого довольно обширна. При этом фундамент может быть различенной формы.
  • Искусственный заземлитель, который будет состоять из нескольких объединенных электродов.

Защиту зданий и сооружений второй/третьей категорий выполняют в формате молниеприемной сетки с определенным шагом ячейки. Также должны присутствовать отдельно стоящие или смонтированные на защищаемом объекте стержневые, либо тросовые молниеприемники.

«Зеленые» облигации в настоящее время являются основным финансовым решением частного бизнеса для перехода мира в низкоуглеродное будущее. Тем не менее, в развивающемся мире «зеленый» рынок все еще находится на начальной стадии, что открывает большие возможности для инвесторов.

Сравнение элегазовых и вакуумных выключателей для среднего напряжения

Опыт разработки выключателей среднего напряжения, как элегазовых, так и вакуумных, создали достаточное свидетельство того, что ни одна их этих двух технологий, в общем, значительно не превосходит другую. Принятие решения в пользу той или другой технологии стимулируют экономические факторы, предпочтения пользователей, национальные "традиции", компетенция и специальные требования.

КРУ среднего напряжения и LSС

Коммутационное оборудование среднего напряжения в металлическом корпусе и категории потери эксплуатационной готовности (LSС) - категории, классификация, примеры.

Какие факторы повлияют на будущее производителей трансформаторов?

Независимо от того, производите ли вы или продаете электроэнергию, или осуществляете поставки силовых трансформаторов за пределы страны, вы вынуждены бороться с конкуренцией на глобальном рынке. Существует три основных категории факторов, которые окажут влияние на будущее всех производителей трансформаторов.

Будущее коммутационного оборудования среднего напряжения

Умные сети стремятся оптимизировать связи между спросом и предложением электроэнергии. При интеграции большего количества распределенных и возобновляемых источников энергии в одну сеть. Готово ли коммутационное оборудование среднего напряжения к решению этих задач, или необходимо его развивать дальше?

В поисках замены элегазу

Элегаз, обладает рядом полезных характеристик, применяется в различных отраслях, в частности, активно используется в секторе электричества высокого напряжения. Однако элегаз обладает и значительным недостатком - это мощный парниковый газ. Он входит в список шести газов, включенных в Киотский протокол.

Энергетическая отрасль имеет на своих руках очень большую проблему: профессионалы, родившиеся в период с середины 1940-х и до середины 1960-х годов, приближаются к пенсионному возрасту. И встает очень большой вопрос: кто их заменит?

Преимущества и типы КРУЭ

Электрическую подстанцию желательно размещать в центре нагрузки. Однако, часто, основным препятствием такого размещения подстанции является требуемое для нее пространство. Эта проблема может быть решена за счет применения технологии КРУЭ.

Вакуум в качестве среды гашения дуги

В настоящее время в средних напряжениях технология гашения дуги в вакууме доминирует по отношению к технологиям, использующим воздух, элегаз, или масло. Обычно, вакуумные выключатели более безопасны, и более надежны в ситуациях, когда число нормальных операций и операций, обслуживающих короткие замыкания, очень велико.

Выбор компании и планирование тепловизионного обследования

Если для вас идея тепловизионного обследования электрического оборудования является новой, то планирование, поиски исполнителя, и определение преимуществ, которые может дать эта технология, вызывают растерянность.

Наиболее известные способы изолирования высокого напряжения

Приводены семь наиболее распространенных и известных материалов, применяемых в качестве высоковольтной изоляции в электрических конструкциях. Для них указываются аспекты, требующие специального внимания.

Пять технологий увеличения эффективности систем передачи и распределения электроэнергии

Если обратить внимание на меры, обладающие наивысшим потенциалом в улучшении энергоэффективности, то на первое место неизбежно выходит передача электроэнергии.

Преодолевая барьеры применения энергии из возобновляемых источников

Несмотря на определенные достижения в последние годы, энергия из возобновляемых источников составляет весьма скромную часть современных услуг по предоставления энергии по всему миру. Почему это так?

В Голландию приходят самовосстанавливающиеся сети

Рост экономики и увеличение численности населения приводят к увеличению спроса на электроэнергию, вместе c жесткими ограничениями на качество и надежность поставок энергии, растут усилия на обеспечение целостности сети. В случае отказа сетей, перед их владельцами стоит задача минимизировать последствия этих отказов, снижая время выхода из строя, и количество отключенных от сети потребителей.

Оборудование высоковольтных выключателей для каждой компании связано со значительными инвестициями. Когда встает вопрос об их обслуживании или замене, то необходимо рассматривать все возможные варианты.

Пути разработки безопасных, надежных и эффективных промышленных подстанций

Рассмотрены основные факторы, которые следует учитывать при разработке электрических подстанций для питания промышленных потребителей. Обращено внимание на некоторые инновационные технологии, которые могут улучшить надежность и эффективность подстанций.

Для проведения сравнения применения вакуумных выключателей или контакторов с плавкими предохранителями в распределительных сетях напряжения 6... 20 кВ, необходимо понимание основных характеристик каждой из этой технологии выключения.

Мониторинг передачи электроэнергии в реальном времени

Спрос на электроэнергию продолжает расти и перед компаниями, передающими электроэнергию, возникает задача роста пропускных мощностей их сетей. Решить ее можно строительством новых и модернизацией старых линий. Но есть еще один способ решения, он заключается в применении датчиков и технологии мониторинга сети.

Генераторные выключатели переменного тока

Играя важную роль в защите электростанций, генераторные выключатели дают возможность более гибкой эксплуатации и позволяют находить эффективные решения для сокращения инвестиционных затрат.

Преимущества постоянного тока в высоковольтных линиях

Несмотря на большее распространение переменного тока при передаче электрической энергии, в ряде случаев использование постоянного тока высокого напряжения предпочтительнее.

Материал, способный сделать солнечную энергию «удивительно дешевой»

Солнечные батареи, изготовленные из давно известного и более дешевого, чем кремний материала, могут генерировать такое же количество электрической энергии, как и используемые сегодня солнечные панели.

Безопасность и экологичность изоляции распределительного оборудования

Целью настоящей статьи является освещение потенциальных опасностей для персонала и окружающей среды, связанных с тем же самым оборудованием, но не находящимся под напряжением. Статья концентрируется на коммутационном и распределительном оборудовании на напряжения свыше 1000 В.

Удар молнии способен привести к разрушению промышленных и жилых сооружений, пожару, взрыву, выходу из строя линий электропередач (ЛЭП), электроустановок и средств информационно - коммуникационных технологий (ИКТ), а также опасен для людей и животных. Особенно опасна эта природная стихия для так называемых критически важных объектов. Поэтому в качестве средств защиты объектов и строений необходим целый комплекс мер, причем как организационного, так и научно-технического характера. Эта совокупность мер и получила название - молниезащита. Она служит для снижения рисков воздействия такого рода катаклизмов на промышленную и гражданскую инфраструктуру.

От степени пожароопасности (или от риска взрыва) здания или строения зависит уровень тяжести последствий от удара молнии. Дополнительно надо учесть возможность искрений в перекрытиях, которые могут быть вызваны сопутствующими молнии воздействиями. К примеру, на производствах, на которых используется открытый огонь и протекают процессы горения, применяются, как правило, несгораемые конструкции. В таком случае, протекание тока молнии не вызывает большой опасности. А вот если в цехах находятся взрывоопасные вещества, то возникает повышенный риск человеческих жертв и огромных материальных убытков. Для специалиста налицо огромный разброс технологических условий для разного рода зданий, объектов и организаций. И в таком случае, предъявить для всех этих объектов одинаковые требования к молниезащите означает либо вложить лишние финансовые средства в проектирование систем защиты, либо же смириться с неизбежностью больших рисков и ущерба, вызванного негативными последствиями ударов молнии. При проектировании систем молниезащиты необходимо учесть и метеорологическую обстановку в данном регионе. Например, статистика гроз в Норильске будет отличаться от статистики гроз в Сочи. Поэтому международные нормативные документы предписывают проектировщикам произвести расчет рисков и потенциального ущерба от воздействия молний. В результате этих причин, здания и строения стали подразделять на классы (уровни защиты), которые различаются по степени тяжести возможного ущерба от поражения молнией. А такой фактор, как активность гроз и молний в соответствующей географической точке, где расположен защищаемый объект, определяет категорию молниезащиты.

Нормативная правовая и технологическая база классификации защищаемых объектов

Международная практика по созданию правовых нормативных документов в области молниезащиты и электробезопасности предусматривает разработку следующих материалов: технические регламенты (ТР), технические кодексы устоявшейся практики (ТКП), международные стандарты (ИСО/МЭК), национальные стандарты (ГОСТ), ведомственные инструкции и руководящие документы (РД).

В области молниезащиты и электробезопасности объектов промышленного и гражданского назначения наиболее часто используемыми при проектировании, монтаже и сертификации (категорировании) нормативными материалами являются следующие:

  • "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87);
  • "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО-153-34.21.122-2003);
  • ГОСТ Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии. Часть 1. Общие принципы;
  • ГОСТ Р МЭК 62305-2-2010. Менеджмент риска. Защита от молнии. Часть 2. Оценка риска;
  • МЭК 62305-3-2010. Защита от атмосферного электричества. Часть 3. Физические повреждения зданий, сооружений и опасность для жизни;
  • МЭК 62305-4:2010 Защита от молнии. Часть 4. Электрические и электронные системы в зданиях (сооружениях);
  • Правила устройства электроустановок (ПУЭ). 7-ое издание (утв. приказом Минэнерго РФ от 8 июля 2002 г. N 204) .

Классы и уровни молниезащиты строений и объектов промышленных и гражданских объектов

В соответствие с вышеизложенными обстоятельствами давайте проанализируем выше упомянутые нормативные документы на предмет классификации и категорирования защищаемых объектов.

"Инструкция по молниезащите зданий и сооружений" (РД 34.21.122-87)

Является самым старым, в хронологическом плане, нормативным документом времён СССР (в дальнейшем будем коротко называть его РД). Это документ прямого действия, он имел исключительную юридическую силу, и все организации были обязаны его применять вне зависимости от их ведомственной принадлежности. Согласно данной инструкции деление зданий и сооружений их целевому назначению и типу молниезащитных систем проводилось по трём категориям, которые подразделялись ещё на классы взрывоопасных и пожароопасных зон, определённых в ПУЭ, а также по типу зоны защиты, которой приписывается определенная надежность

— 0,995 для зоны А и 0,95 для зоны Б.

  1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к I категории (согласно РД), обычно реализуется с помощью отдельно стоящих стержневых или тросовых молниеотводов.

С помощью таких молниеотводов обеспечивается зона защиты типа А (см. РД, приложение 3). Элементы молниеотводов должны быть удалены от защищаемого объекта, а также от подземных металлических коммуникаций. Можно выбрать естественный или искусственный заземлитель (см. п.1.8. РД).

Конструкции заземлителей, допустимые для отдельно стоящих молниеотводов:

  1. а) железобетонный подножник (один или несколько), его длина не менее 2 м или же железобетонная свая (может быть несколько), ее длина не менее 5 м;
  2. б) стойка железобетонной опоры (диаметр не менее чем 0,25 м, заглублена в землю не менее чем на 5 м);
  3. в) железобетонный фундамент произвольной формы (площадь поверхности контакта с землей не менее 10 м2);
  4. г) искусственный заземлитель может состоять из 3-х вертикальных электродов и более длиной не менее 3 м, которые объединены горизонтальным электродом, расстояние между этими вертикальными электродами не менее 5 м.

Защита от заноса высокого потенциала выполняется согласно п.2.2., 1.8. РД.

  1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к II категории (согласно РД), обычно реализуется таким образом: устанавливаются отдельно стоящие стержневые или тросовые молниеотводы.

Или же они устанавливаются прямо на защищаемом объекте. Они обеспечивают зону защиты в соответствии с требованиями РД (см. табл. 1, п. 2.6 и приложение 3.) При установке молниеотводов на защищаемом объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть проведено не менее 2-х токоотводов. Когда уклон кровли здания не более 1:8 можно применить молниеприемную сетку. Установка молниеприемников или наложение молниеприемной сетки не обязательно для строений с металлическими фермами, если выполняются условия, при которых в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

На зданиях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля.

Токоотводы от металлической кровли или молниеприемной сетки прокладываются к заземлителям не реже чем через 25 м по периметру здания.

При удельном сопротивлении грунта менее 500 Ом*м и площади здания более 250 кв. м. , а также в грунте с удельным сопротивлением от 500 до 1000 Ом*м при площади здания более 900 кв.м. выполняется горизонтальный контур вокруг здания на глубине 0,5 м. В первом случае, если площадь здания менее 250 кв.м., в месте соединения токоотвода приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 метра, а во втором случае при площади менее 900 кв.м. приваривается не менее двух электродов.

  1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в РД (см.п.2.11, соблюдая также п. 2.12. и 2.14. РД), например, с помощью прокладки моолниеприёмной сетки. При прокладке такой сетки в качестве токоотводов используются металлические конструкции зданий.

Во всех возможных случаях для объектов III категории в качестве заземлителей для защиты от прямых ударов молнии рекомендуется применять железобетонные фундаменты самих зданий. Если же нет такой возможности, то вполне применимы и искусственные заземлители. Искусственный заземлитель обычно изготовлен из двух и более вертикальных электродов длиной не менее 3 м, которые объединены горизонтальным электродом длиной не менее 5 м.

Если же рекомендовано использовать в качестве молниеприемников сетки или металлической кровли, то по всему периметру здания в земле на глубине не менее 0,5 м прокладывают наружный контур, который изготовлен из горизонтальных электродов. В зданиях, площадь которых более 100 м, наружный контур заземления может быть использован для выравнивания потенциалов внутри здания (п.1.9. РД). Заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки (п.1.7 ПУЭ).

Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю защиты от прямых ударов молний.

"Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

Далее СО, документ, носящий рекомендательный характер, пришедший на смену РД, но его не отменивший, не внёс определённости в область классификации и категорирования объектов защиты от воздействия атмосферного электричества. Во-первых, он не преемственен с предыдущим нормативным документом - РД, а во-вторых анонсированные справочные и руководящие материалы в качестве приложений к СО так и не вышли. В итоге Ростехнадзор в своём разъяснении о совместном применении РД и СО №10-03-04 / 182 от 01. 12. 2004 разрешил совместное (комбинированное) применение двух инструкций, что окончательно запутало и так не простую ситуацию с правоприменительной базой в области молниезащиты строений и сооружений промышленного и гражданского назначения. Так в чём же особенности этого документа? Во-первых, в отличие, от РД, в котором предусматривалось 3 категории объектов, выделенных по уровню их защищённости от воздействия молнии, в СО вводится уже 4 класса объектов по параметрам молниезащитных систем. Во-вторых, регулятор предлагает ввести классификатор по воздействиям тока молнии. Это сделано, чтобы каким-то образом нормировать средства защиты от прямых ударов молнии. В целом этот нормативный документ приближен к рекомендациям МЭК, но полного соответствия с ними не имеет, а в основном своём предназначении СО определяет надежность защиты для обычных и специальных объектов в соответствии с уровнем защиты, который устанавливается отраслевыми РД для объектов различного типа и назначения.

ГОСТ Р МЭК 62305-1,2,3,4-2010

  • - серия документов МЭК, возведенных уже в ранг государственных стандартов РФ в части организации систем защиты от молний причем и для промышленных, и для гражданских сооружений. Из рабочей практики нам известно, что обеспечить абсолютную защиту от молнии невозможно. Поэтому технические руководства, которые доступны в настоящей серии стандартов, позволяют разработать эффективные cистемы молниезащиты (МЗ), обеспечивающие существенное понижение рисков (возможного ущерба) от поражения молнией до приемлемого уровня, а остаточные риски перевести в плоскость страховых случаев. С помощью данной серии стандартов стало возможно интегрировать всю совокупность мер защиты в общую систему. Также были выделены целых 2 группы критериев для проектирования и применения мер защиты:
  • комплекс защитных мер, который необходим для снижения уровня повреждения объектов, а также для уменьшения угрозы опасности для жизни персонала, находящегося в здании, образует первую группу (МЭК 62305-3);
  • совокупность мер защиты, которые требуются для уменьшения количества случаев выхода из строя электрических схем, которые расположены в строениях образуют вторую группу (МЭК 62305-4).

Только приняв во внимание все параметры защищаемого объекта, проектировщик выбирает соответствующие уровни защиты от молнии.

В данной серии стандартов установлены 4 класса МЗ (I - IV), а уже в соответствие им установлены уровни молниезащиты (см. МЭК 62305-1, табл. 1).

Любой класс можно описать определёнными параметрами, которые считаются либо зависящими от уровня молниезащиты или независящими:

Параметры, которые зависят от класса МЗ:

  • параметры, описывающие молнию (см. МЭК 62305-1, табл. 3,4,5);
  • катящаяся сфера (берется ее R), ячейка (берется ее размер), величина угла защиты (см. МЭК 62305-3, п. 5.2.2);
  • расстояния между токоотводами (типичные), расстояния между кольцевыми проводниками (см. МЭК 62305-3,п. 5.3.3);
  • расстояния от места опасного искрения, которые можно считать неопасными (см. МЭК 62305-3, п.6.3);
  • длина заземлителей (берется минимальная величина), (см. МЭК 62305-3, п.5.4.2).

Параметры, которые не зависят от класса МЗ:

  1. величина уравнивания грозовых потенциалов (см. МЭК 62305-3, п. 6.2);
  2. замеряемая толщина листов из металла (минимальное значение), а также металлических труб, находящихся в молниеприемниках (см. МЭК 62305-3, п.5.2.5);
  3. материалы МЗ, условия применения этих материалов (см. МЭК 62305-3, п.5.5);
  4. параметры молниеприёмников (материал, из которого они сделаны, минимальные размеры, конфигурация). Здесь же рассматриваем токоотводы и заземлители (см. МЭК 62305-3, п.5.6).

Остановимся более подробно на данном пункте, т.к. его трактовка в разных нормативных документах имеет некоторые отличительные особенности.

При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (по возможности менее 10 Ом, измеренное на низкой частоте). Для молниезащиты предпочтительнее использовать встроенный в здание и пригодный для всех целей отдельный заземлитель (например, для молниезащиты, систем электропередачи и связи).

Системы заземления должны соединяться в соответствии с требованиями МЭК 62305-3, п. 6.2. Используют два основных конструктивных типа (А и В) размещения заземляющих электродов.

Расположение типа А: Данный тип размещения включает горизонтальные или вертикальные электроды, установленные за пределами защищаемого здания и присоединенные к каждому токоотводу. В расположении типа А общее количество используемых заземляющих электродов должно быть не менее двух.

Расположение типа В: Данный тип расположения включает либо кольцевой проводник, находящийся за пределами защищаемого здания, соприкасающийся с почвой на 80 % своей полной длины, либо заземляющий электрод в фундаменте. Эти заземляющие электроды также могут быть сетчатыми. Расположение заземления типа B рекомендуется использовать для зданий с электронными системами, т.к. оно позволяет снизить влияние помех и перенапряжений. Параметры заземляющих электродов определены в МЭК 62305-3, п. 5.4.2.2.

Тем не менее, исходя из общего совокупного анализа действующих нормативных документов, можно построить условную классификацию объектов молниезащиты по уровням МЗ.

Объект I-го класса МЗ

Объект: специальный (критически важный), опасный для окружающей среды, жизнедеятельности человека и животных. Тип объекта: химическое и нефтехимическое производство, биохимические и бактериологические концерны, производство взрывчатки, атомные электростанции и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,98 (для отдельной категории объектов зоны А может устанавливаться более высокий уровень 0,995). Возникающие негативные последствия от удара молнии: пожар, взрыв, выбросы токсичных веществ, повышенная радиация на значительной территории и пр. Крайний случай - экологическая катастрофа с непоправимыми материальными и человеческими жертвами.

Объект II-го класса МЗ

Здесь описаны типы специальных объектов, представляющих опасность для непосредственного окружения.

Тип объекта: нефтепереработка, АЗС, мукомольные, деревообрабатывающие фабрики, производство пластмассовых изделий и пр.

Гарантированная надёжность защиты от прямого удара молнии - 0,95 (для отдельной категории объектов зоны Б может устанавливаться более высокий уровень).

Возникающие негативные последствия от удара молнии: пожары, взрывы внутри помещения и на прилегающей территории. Вероятны сопутствующие разрушения стен и перекрытий, а также сильные травмы и даже гибель сотрудников и посетителей. В этом случае фиксируются значительные финансовые потери.

Объект III-го класса МЗ

Объект: специальный, критическая инфраструктура.

Тип объекта: предприятия связи и ИКТ, трубопроводный транспорт, ЛЭП, оборудование централизованного отопления, транспортная инфраструктура и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,9.

Возникающие негативные последствия от удара молнии: прерывание связи, частичная или полная потеря управления, перебои с водоснабжением и отоплением, временное снижение качества жизни, материальные потери.

Объект IV-го класса МЗ

Объект: общий, промышленные и гражданские сооружения и сопутствующая инфраструктура.

Тип объекта: жилые дома, производственные сооружения (высотой не более 60 м.), дома и коттеджи в селах, объекты социально-культурного назначения, учреждения образования, больницы, а также музеи, храмы, церкви и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,8. Возникающие негативные последствия от удара молнии: сильные пожары, разрушения зданий, нарушения работы транспорта, прерывание систем коммуникаций, возможная утрата исторического и культурного наследия. Значительные материальные и финансовые потери. Вероятны человеческие жертвы. Как следует из приведенной системы классификации, любой класс МЗ имеет отличия от другого класса по характеристикам (назначению) объекта и параметрам молниезащиты, а также типом заземляющего устройства, конструкция которого определяется назначением и размещением сооружения.

Заключение

Рассмотрев в этом аналитическом обзоре проблемы молниезащиты объектов промышленного и гражданского назначения и соответствующей инфраструктуры, можно констатировать, что вопросы защиты от воздействия атмосферного электричества в плане регулирования и применения правовой нормативной технической базы в РФ определяются достаточно широким спектром действующих нормативных документов, а именно: СО, РД, ГОСТы и пр. Использование сочетания положений этих документов, позволит построить полноценную систему молниезащиты для объектов всех классов и категорий. Можно выделить 2 подхода к проектированию молниезащиты. Первый - построение молниезащиты в соответствии с категориями РД. Второй - обеспечение требуемой надежности защиты, руководствуясь СО и отраслевыми стандартами. Выбор нормативных документов зависит от сферы, в которой производится проектирование и наполненности предметной области внутренними документами. В основном, отраслевые нормативы содержат модернизированные требования СО и РД, так что можно сказать, что эти документы по-прежнему остаются определяющими в силу традиций многолетнего опыта использования. ГОСТы и стандарты МЭК используются как ссылочные, а также к ним прибегают в случае неполноты или отсутствия некоторых параметров МЗ в РД или СО.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в

Удар молнии способен привести к разрушению промышленных и жилых сооружений, пожару, взрыву, выходу из строя линий электропередач (ЛЭП), электроустановок и средств информационно - коммуникационных технологий (ИКТ), а также опасен для людей и животных. Особенно опасна эта природная стихия для так называемых критически важных объектов. Поэтому в качестве средств защиты объектов и строений необходим целый комплекс мер, причем как организационного, так и научно-технического характера. Эта совокупность мер и получила название - молниезащита. Она служит для снижения рисков воздействия такого рода катаклизмов на промышленную и гражданскую инфраструктуру.

От степени пожароопасности (или от риска взрыва) здания или строения зависит уровень тяжести последствий от удара молнии. Дополнительно надо учесть возможность искрений в перекрытиях, которые могут быть вызваны сопутствующими молнии воздействиями. К примеру, на производствах, на которых используется открытый огонь и протекают процессы горения, применяются, как правило, несгораемые конструкции. В таком случае, протекание тока молнии не вызывает большой опасности. А вот если в цехах находятся взрывоопасные вещества, то возникает повышенный риск человеческих жертв и огромных материальных убытков. Для специалиста налицо огромный разброс технологических условий для разного рода зданий, объектов и организаций. И в таком случае, предъявить для всех этих объектов одинаковые требования к молниезащите означает либо вложить лишние финансовые средства в проектирование систем защиты, либо же смириться с неизбежностью больших рисков и ущерба, вызванного негативными последствиями ударов молнии. При проектировании систем молниезащиты необходимо учесть и метеорологическую обстановку в данном регионе. Например, статистика гроз в Норильске будет отличаться от статистики гроз в Сочи. Поэтому международные нормативные документы предписывают проектировщикам произвести расчет рисков и потенциального ущерба от воздействия молний. В результате этих причин, здания и строения стали подразделять на классы (уровни защиты), которые различаются по степени тяжести возможного ущерба от поражения молнией. А такой фактор, как активность гроз и молний в соответствующей географической точке, где расположен защищаемый объект, определяет категорию молниезащиты.

Нормативная правовая и технологическая база классификации защищаемых объектов

Международная практика по созданию правовых нормативных документов в области молниезащиты и электробезопасности предусматривает разработку следующих материалов: технические регламенты (ТР), технические кодексы устоявшейся практики (ТКП), международные стандарты (ИСО/МЭК), национальные стандарты (ГОСТ), ведомственные инструкции и руководящие документы (РД).

В области молниезащиты и электробезопасности объектов промышленного и гражданского назначения наиболее часто используемыми при проектировании, монтаже и сертификации (категорировании) нормативными материалами являются следующие:

  • "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87);
  • "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО-153-34.21.122-2003);
  • ГОСТ Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии. Часть 1. Общие принципы;
  • ГОСТ Р МЭК 62305-2-2010. Менеджмент риска. Защита от молнии. Часть 2. Оценка риска;
  • МЭК 62305-3-2010. Защита от атмосферного электричества. Часть 3. Физические повреждения зданий, сооружений и опасность для жизни;
  • МЭК 62305-4:2010 Защита от молнии. Часть 4. Электрические и электронные системы в зданиях (сооружениях);
  • Правила устройства электроустановок (ПУЭ). 7-ое издание (утв. приказом Минэнерго РФ от 8 июля 2002 г. N 204) .

Классы и уровни молниезащиты строений и объектов промышленных и гражданских объектов

В соответствие с вышеизложенными обстоятельствами давайте проанализируем выше упомянутые нормативные документы на предмет классификации и категорирования защищаемых объектов.

"Инструкция по молниезащите зданий и сооружений" (РД 34.21.122-87)

Является самым старым, в хронологическом плане, нормативным документом времён СССР (в дальнейшем будем коротко называть его РД). Это документ прямого действия, он имел исключительную юридическую силу, и все организации были обязаны его применять вне зависимости от их ведомственной принадлежности. Согласно данной инструкции деление зданий и сооружений их целевому назначению и типу молниезащитных систем проводилось по трём категориям, которые подразделялись ещё на классы взрывоопасных и пожароопасных зон, определённых в ПУЭ, а также по типу зоны защиты, которой приписывается определенная надежность

— 0,995 для зоны А и 0,95 для зоны Б.

  1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к I категории (согласно РД), обычно реализуется с помощью отдельно стоящих стержневых или тросовых молниеотводов.

С помощью таких молниеотводов обеспечивается зона защиты типа А (см. РД, приложение 3). Элементы молниеотводов должны быть удалены от защищаемого объекта, а также от подземных металлических коммуникаций. Можно выбрать естественный или искусственный заземлитель (см. п.1.8. РД).

Конструкции заземлителей, допустимые для отдельно стоящих молниеотводов:

  1. а) железобетонный подножник (один или несколько), его длина не менее 2 м или же железобетонная свая (может быть несколько), ее длина не менее 5 м;
  2. б) стойка железобетонной опоры (диаметр не менее чем 0,25 м, заглублена в землю не менее чем на 5 м);
  3. в) железобетонный фундамент произвольной формы (площадь поверхности контакта с землей не менее 10 м2);
  4. г) искусственный заземлитель может состоять из 3-х вертикальных электродов и более длиной не менее 3 м, которые объединены горизонтальным электродом, расстояние между этими вертикальными электродами не менее 5 м.

Защита от заноса высокого потенциала выполняется согласно п.2.2., 1.8. РД.

  1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к II категории (согласно РД), обычно реализуется таким образом: устанавливаются отдельно стоящие стержневые или тросовые молниеотводы.

Или же они устанавливаются прямо на защищаемом объекте. Они обеспечивают зону защиты в соответствии с требованиями РД (см. табл. 1, п. 2.6 и приложение 3.) При установке молниеотводов на защищаемом объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть проведено не менее 2-х токоотводов. Когда уклон кровли здания не более 1:8 можно применить молниеприемную сетку. Установка молниеприемников или наложение молниеприемной сетки не обязательно для строений с металлическими фермами, если выполняются условия, при которых в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

На зданиях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля.

Токоотводы от металлической кровли или молниеприемной сетки прокладываются к заземлителям не реже чем через 25 м по периметру здания.

При удельном сопротивлении грунта менее 500 Ом*м и площади здания более 250 кв. м. , а также в грунте с удельным сопротивлением от 500 до 1000 Ом*м при площади здания более 900 кв.м. выполняется горизонтальный контур вокруг здания на глубине 0,5 м. В первом случае, если площадь здания менее 250 кв.м., в месте соединения токоотвода приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 метра, а во втором случае при площади менее 900 кв.м. приваривается не менее двух электродов.

  1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в РД (см.п.2.11, соблюдая также п. 2.12. и 2.14. РД), например, с помощью прокладки моолниеприёмной сетки. При прокладке такой сетки в качестве токоотводов используются металлические конструкции зданий.

Во всех возможных случаях для объектов III категории в качестве заземлителей для защиты от прямых ударов молнии рекомендуется применять железобетонные фундаменты самих зданий. Если же нет такой возможности, то вполне применимы и искусственные заземлители. Искусственный заземлитель обычно изготовлен из двух и более вертикальных электродов длиной не менее 3 м, которые объединены горизонтальным электродом длиной не менее 5 м.

Если же рекомендовано использовать в качестве молниеприемников сетки или металлической кровли, то по всему периметру здания в земле на глубине не менее 0,5 м прокладывают наружный контур, который изготовлен из горизонтальных электродов. В зданиях, площадь которых более 100 м, наружный контур заземления может быть использован для выравнивания потенциалов внутри здания (п.1.9. РД). Заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки (п.1.7 ПУЭ).

Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю защиты от прямых ударов молний.

"Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

Далее СО, документ, носящий рекомендательный характер, пришедший на смену РД, но его не отменивший, не внёс определённости в область классификации и категорирования объектов защиты от воздействия атмосферного электричества. Во-первых, он не преемственен с предыдущим нормативным документом - РД, а во-вторых анонсированные справочные и руководящие материалы в качестве приложений к СО так и не вышли. В итоге Ростехнадзор в своём разъяснении о совместном применении РД и СО №10-03-04 / 182 от 01. 12. 2004 разрешил совместное (комбинированное) применение двух инструкций, что окончательно запутало и так не простую ситуацию с правоприменительной базой в области молниезащиты строений и сооружений промышленного и гражданского назначения. Так в чём же особенности этого документа? Во-первых, в отличие, от РД, в котором предусматривалось 3 категории объектов, выделенных по уровню их защищённости от воздействия молнии, в СО вводится уже 4 класса объектов по параметрам молниезащитных систем. Во-вторых, регулятор предлагает ввести классификатор по воздействиям тока молнии. Это сделано, чтобы каким-то образом нормировать средства защиты от прямых ударов молнии. В целом этот нормативный документ приближен к рекомендациям МЭК, но полного соответствия с ними не имеет, а в основном своём предназначении СО определяет надежность защиты для обычных и специальных объектов в соответствии с уровнем защиты, который устанавливается отраслевыми РД для объектов различного типа и назначения.

ГОСТ Р МЭК 62305-1,2,3,4-2010

  • - серия документов МЭК, возведенных уже в ранг государственных стандартов РФ в части организации систем защиты от молний причем и для промышленных, и для гражданских сооружений. Из рабочей практики нам известно, что обеспечить абсолютную защиту от молнии невозможно. Поэтому технические руководства, которые доступны в настоящей серии стандартов, позволяют разработать эффективные cистемы молниезащиты (МЗ), обеспечивающие существенное понижение рисков (возможного ущерба) от поражения молнией до приемлемого уровня, а остаточные риски перевести в плоскость страховых случаев. С помощью данной серии стандартов стало возможно интегрировать всю совокупность мер защиты в общую систему. Также были выделены целых 2 группы критериев для проектирования и применения мер защиты:
  • комплекс защитных мер, который необходим для снижения уровня повреждения объектов, а также для уменьшения угрозы опасности для жизни персонала, находящегося в здании, образует первую группу (МЭК 62305-3);
  • совокупность мер защиты, которые требуются для уменьшения количества случаев выхода из строя электрических схем, которые расположены в строениях образуют вторую группу (МЭК 62305-4).

Только приняв во внимание все параметры защищаемого объекта, проектировщик выбирает соответствующие уровни защиты от молнии.

В данной серии стандартов установлены 4 класса МЗ (I - IV), а уже в соответствие им установлены уровни молниезащиты (см. МЭК 62305-1, табл. 1).

Любой класс можно описать определёнными параметрами, которые считаются либо зависящими от уровня молниезащиты или независящими:

Параметры, которые зависят от класса МЗ:

  • параметры, описывающие молнию (см. МЭК 62305-1, табл. 3,4,5);
  • катящаяся сфера (берется ее R), ячейка (берется ее размер), величина угла защиты (см. МЭК 62305-3, п. 5.2.2);
  • расстояния между токоотводами (типичные), расстояния между кольцевыми проводниками (см. МЭК 62305-3,п. 5.3.3);
  • расстояния от места опасного искрения, которые можно считать неопасными (см. МЭК 62305-3, п.6.3);
  • длина заземлителей (берется минимальная величина), (см. МЭК 62305-3, п.5.4.2).

Параметры, которые не зависят от класса МЗ:

  1. величина уравнивания грозовых потенциалов (см. МЭК 62305-3, п. 6.2);
  2. замеряемая толщина листов из металла (минимальное значение), а также металлических труб, находящихся в молниеприемниках (см. МЭК 62305-3, п.5.2.5);
  3. материалы МЗ, условия применения этих материалов (см. МЭК 62305-3, п.5.5);
  4. параметры молниеприёмников (материал, из которого они сделаны, минимальные размеры, конфигурация). Здесь же рассматриваем токоотводы и заземлители (см. МЭК 62305-3, п.5.6).

Остановимся более подробно на данном пункте, т.к. его трактовка в разных нормативных документах имеет некоторые отличительные особенности.

При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (по возможности менее 10 Ом, измеренное на низкой частоте). Для молниезащиты предпочтительнее использовать встроенный в здание и пригодный для всех целей отдельный заземлитель (например, для молниезащиты, систем электропередачи и связи).

Системы заземления должны соединяться в соответствии с требованиями МЭК 62305-3, п. 6.2. Используют два основных конструктивных типа (А и В) размещения заземляющих электродов.

Расположение типа А: Данный тип размещения включает горизонтальные или вертикальные электроды, установленные за пределами защищаемого здания и присоединенные к каждому токоотводу. В расположении типа А общее количество используемых заземляющих электродов должно быть не менее двух.

Расположение типа В: Данный тип расположения включает либо кольцевой проводник, находящийся за пределами защищаемого здания, соприкасающийся с почвой на 80 % своей полной длины, либо заземляющий электрод в фундаменте. Эти заземляющие электроды также могут быть сетчатыми. Расположение заземления типа B рекомендуется использовать для зданий с электронными системами, т.к. оно позволяет снизить влияние помех и перенапряжений. Параметры заземляющих электродов определены в МЭК 62305-3, п. 5.4.2.2.

Тем не менее, исходя из общего совокупного анализа действующих нормативных документов, можно построить условную классификацию объектов молниезащиты по уровням МЗ.

Объект I-го класса МЗ

Объект: специальный (критически важный), опасный для окружающей среды, жизнедеятельности человека и животных. Тип объекта: химическое и нефтехимическое производство, биохимические и бактериологические концерны, производство взрывчатки, атомные электростанции и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,98 (для отдельной категории объектов зоны А может устанавливаться более высокий уровень 0,995). Возникающие негативные последствия от удара молнии: пожар, взрыв, выбросы токсичных веществ, повышенная радиация на значительной территории и пр. Крайний случай - экологическая катастрофа с непоправимыми материальными и человеческими жертвами.

Объект II-го класса МЗ

Здесь описаны типы специальных объектов, представляющих опасность для непосредственного окружения.

Тип объекта: нефтепереработка, АЗС, мукомольные, деревообрабатывающие фабрики, производство пластмассовых изделий и пр.

Гарантированная надёжность защиты от прямого удара молнии - 0,95 (для отдельной категории объектов зоны Б может устанавливаться более высокий уровень).

Возникающие негативные последствия от удара молнии: пожары, взрывы внутри помещения и на прилегающей территории. Вероятны сопутствующие разрушения стен и перекрытий, а также сильные травмы и даже гибель сотрудников и посетителей. В этом случае фиксируются значительные финансовые потери.

Объект III-го класса МЗ

Объект: специальный, критическая инфраструктура.

Тип объекта: предприятия связи и ИКТ, трубопроводный транспорт, ЛЭП, оборудование централизованного отопления, транспортная инфраструктура и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,9.

Возникающие негативные последствия от удара молнии: прерывание связи, частичная или полная потеря управления, перебои с водоснабжением и отоплением, временное снижение качества жизни, материальные потери.

Объект IV-го класса МЗ

Объект: общий, промышленные и гражданские сооружения и сопутствующая инфраструктура.

Тип объекта: жилые дома, производственные сооружения (высотой не более 60 м.), дома и коттеджи в селах, объекты социально-культурного назначения, учреждения образования, больницы, а также музеи, храмы, церкви и др.

Гарантированная надёжность защиты от прямого удара молнии - 0,8. Возникающие негативные последствия от удара молнии: сильные пожары, разрушения зданий, нарушения работы транспорта, прерывание систем коммуникаций, возможная утрата исторического и культурного наследия. Значительные материальные и финансовые потери. Вероятны человеческие жертвы. Как следует из приведенной системы классификации, любой класс МЗ имеет отличия от другого класса по характеристикам (назначению) объекта и параметрам молниезащиты, а также типом заземляющего устройства, конструкция которого определяется назначением и размещением сооружения.

Заключение

Рассмотрев в этом аналитическом обзоре проблемы молниезащиты объектов промышленного и гражданского назначения и соответствующей инфраструктуры, можно констатировать, что вопросы защиты от воздействия атмосферного электричества в плане регулирования и применения правовой нормативной технической базы в РФ определяются достаточно широким спектром действующих нормативных документов, а именно: СО, РД, ГОСТы и пр. Использование сочетания положений этих документов, позволит построить полноценную систему молниезащиты для объектов всех классов и категорий. Можно выделить 2 подхода к проектированию молниезащиты. Первый - построение молниезащиты в соответствии с категориями РД. Второй - обеспечение требуемой надежности защиты, руководствуясь СО и отраслевыми стандартами. Выбор нормативных документов зависит от сферы, в которой производится проектирование и наполненности предметной области внутренними документами. В основном, отраслевые нормативы содержат модернизированные требования СО и РД, так что можно сказать, что эти документы по-прежнему остаются определяющими в силу традиций многолетнего опыта использования. ГОСТы и стандарты МЭК используются как ссылочные, а также к ним прибегают в случае неполноты или отсутствия некоторых параметров МЗ в РД или СО.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в



Поделиться