Защита от источников теплового излучения. Оздоровление воздушной среды. Защита от теплового излучения

Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушное душирование). Перечисленные выше средства защиты носят обобщающее понятие теплозащитных средств. Теплозащитные средства должны обеспечивать тепловую облученность на рабочих местах не более 35 Вт/м 2 и температуру поверхности оборудования не выше 35°С при температуре внутри источника тепла до 100°С и не выше 45°С – при температуре внутри источника тепла выше 100°С.

Основным показателем, характеризующим эффективность теплоизоляционных материалов, является низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/(м·К).

Наиболее простым методом защиты от тепловых излучений является защита расстоянием.

Защита расстоянием от опасного воздействия осуществляется в помещениях с избытками тепла от производственных объектов (печей, топок, реакторов и т.д.). Обычно осуществляется механизацией и автоматизацией производственных процессов, дистанционным управлением ими. Автоматизация процессов не только повышает производительность, но и улучшает условия труда, поскольку работники выводятся из опасной зоны и осуществляют контроль или управление технологическими процессами из помещений с нормальными микроклиматическими условиями.

При температуре воздуха на рабочих местах выше или ниже допустимых величин в целях защиты работающих от возможного перегревания или переохлаждения ограничивают время пребывания на рабочих местах (непрерывно или суммарно за рабочую смену) СанПиН 2.2.4.548–96 . При работе закрытых необогреваемых помещениях в холодное время года при определенных температурах и скоростях движения воздуха устанавливают перерывы для обогревания рабочих.

Одним из самых распространенных способов борьбы с тепловым инфракрасным излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных для ИК излучения экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных для ИК излучения экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны классифицируют на теплоотражающие, теплопоглощающие и теплоотводящие.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Оценить эффективность снижения интенсивности от теплового излучения с помощью экранов можно по формуле:

где Q – интенсивность теплового излучения без применения защиты, Вт/м 2 ;

Q З – интенсивность теплового излучения с применением защиты, Вт/м 2 .

При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха L ПР (м 3 /ч) определяют по формуле:

, (3.6)

где Q ИЗБ – избыток явного тепла, кДж/ч;

T УД – температура удаляемого воздуха, °С;

T ПР – температура приточного воздуха, °С;

ρ ПР – плотность приточного воздуха, кг/м 3 ;

c – удельная теплоемкость воздуха, кДж/кгград.

Температуру воздуха, удаляемого из помещения, определяют по формуле:

, (3.7)

где T РЗ – температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, °С;

T – температурный градиент по высоте помещения, °С/м; (обычно 0,5 – 1,5 °С/м);

Н – расстояние от пола до центра вытяжных проемов, м;

2 – высота рабочей зоны, м.

Защита человека от избыточного теплового излучения осу­ществляется по следующим направлениям: теплоизоляция нагретых поверхностей, экранирование теплового излучения, использование воздушного дублирования, использование защитной одежды.

Теплоизоляция позволяет не только уменьшить величинуинтенсивности излучения на рабочем месте, но и уменьшить тепловыделения в рабочую зону, а также исключить возможность ожо­гов при прикосновении к нагретым поверхностям.

Согласно санитарным нормам (СН 245-71), температура по­верхностей машин, механизмов и прочего производственного оборудования, с которым возможен контакт рабочего, должка иметь температуру не выше +45°С.

Наиболее распространенным и эффективным способом защиты от излучения является экранирование. Экраны применяюткак для экранирования источников, так и дня зашиты рабочего места. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие.

В качестве материалов для теплоотражающих экранов исполь­зуются листовой алюминий, белая жесть, алъфоль (алюминиевая фольга) и другие материалы, имеющие хорошие отражательные способности.

Материалом для теплопоглощающих экранов служат вещества с достаточно высоким термическимсопротивлением -асбест, огнеупорный кирпич, минеральная вата и т. д. К теплопоглощающим относятся также экраны в виде цепных звеньев. Такой экран ус­тупает по эффективности сплошным и поэтому используется,какправило, при интенсивности излучения до 1160 Вт/м 2 , но остав­ляет открытым доступ в рабочее пространство печи.

Теплоотводящие экраны представляют собой различные кон­струкции, охлаждаемые, как правило, водой. Используются при любых интенсивностях излучений. Наиболее простым по съеме и распространенными в практике являются экраны в виде водяной завесы, встраиваемой у рабочих окон печей.

При относительно небольших интенсивностях излучений (до 2320 Вт/м 2) с целью сохранения теплового баланса в организме человекаи, как следствие его полной трудоспособности, исполь­зуется воздушное душирование или обдувание на рабочем месте от переданных или стационарных вентиляционных установок.

Скорости подаваемого потока воздуха в зависимости от ка­тегории работы, времени года, температуры воздуха и величины интенсивности излучения (при нормальной относительной влажности = 40-60 % и барометрическом давлении 1013 гПА приве­дены в СН 245-71).

Результаты экспериментальных

Исследований

Экранирование цепями Водяная завеса Стекло
Без экрана 1 экран 2 экрана 3 экрана Без завесы С завесой
Кал/см 2 мин 0,8 0,6 0,5 0,4 0,8 0,4 0.2
Вт/м 2
Эффективность экранирования, % 37,5
Допустимое время облучения Переносимо в течении раб дня и более Переносимо в течении раб дня и более Порог чувствительности
Длина волны излучения с max энергии l MAX = 3,25 мкм
Температура источника в 0 С Т = 893,46
Допустимое значение облученности в Вт/м 2 [Е Р.М. ] = 330

По результатам исследований можно судить о необходимости экранирования теплового излучения при действии его на человека, условно находящего в лаборатории в 30 см от источника. Как видно, без экрана тепловое излучение будет выше допустимого значения, что неблагоприятно сказывается как на здоровье самого рабочего, так и на его труде. Допустимое значение облученности удовлетворяется и при экране из трёх цепей, а также при экране из сплошного стекла. Также можно сделать вывод, что для экранирования теплового излучения целесообразней применять экран из стекла.

Цель работы – практическое ознакомление с теорией теплового (инфракрасного) излучения, физической сущностью и инженерным расчетом теплоизоляции

Тепловым излучением называется процесс, при котором лучистая энергия распространяется в форме инфракрасных лучей с длиной волны до 10 мм. Источниками тепловых излучений являются все нагретые тела.

В условиях производства источниками тепловых излучений могут быть наружные стенки котлов, горячих теплопроводов, машин, проводников электросетей, электрических машин и аппаратов, нагревательных приборов и др. Источниками инфракрасных лучей являются расплавленные и раскаленные металлы и другие вещества.

Выделение тепла в воздух помещения оценивают количеством его (ккал/ч, Дж/ч) на 1 м 3 строительного объема здания.

Лучистая тепловая энергия воздухом почти не поглощается, а передается от более нагретых тел к поверхности менее нагретых, повышая их температуру. Сам же воздух нагревается от нагретых тел путем конвекции.

Нормальной температурой воздуха в производственном помещении считается температура порядка 20 °С. При этой температуре в организме человека наилучшим образом осуществляется терморегуляция, т.е. поддержание постоянной температуры тела на уровне около 37 °С.

При значительном перегреве организма возникает опасное заболевание, характеризуемое нарушение работы сердечнососудистой системы. Такое внезапное заболевание, называется также тепловым ударом, в тяжелых случаях может быть смертельным. Поэтому санитарными нормами проектирования регламентированы параметры благоприятного микроклимата в производственных помещения. Так, например, комфортным условиям для организма человека при неподвижном воздухе соответствует температура 25° С при влажности 60 %.

В зависимости от наличия в помещении источников тепла и опасности перегрева для поддержания нормального микроклимата применяется вентиляция или более совершенное средство - кондиционирование воздуха. Следует отметить, что вентиляция и кондиционирование воздуха не защищают организм от тепловых лучей, которые проходят через воздух почти беспрепятственно. Защита от лучистого тепла может осуществляться путем устранения источников тепловых лучей и при помощи защиты людей от их действия экранами из малотеплопроводных материалов (асбест, шифер). Индивидуальная защита осуществляется применением

спецодежды и защитных средств (брезентовые или суконные костюмы, очки со светофильтрами, щитки из органического стекла и др.).



В горячих цехах важную роль играет снабжение рабочих питьевой подсоленной или газированной водой, что улучшает водный баланс организма.

К числу мероприятий, способных ослабить вредное действие теплового излучения, относятся:

а) механизация работ, направленная на то, чтобы работники меньше подвергались тепловому облучению;

б) устройство у тепловыделяющих производственных источников цепных или водяных завес;

в) применение экранов из материалов, обладающих малой теплопроводностью;

г) осуществление аэрации горячих цехов;

д) устройство специальных комнат отдыха, а также душей, снабжение работников подсоленной газированной водой (3 г соли на 1 л воды);

е) применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах;

ж) обязательное применение специальных очков для защиты от инфракрасного излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.

Теплозащитные экраны (рис. 15) применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место. Ослабление теплового потока за экраном обусловлено его поглотительной и отражательной способностью. Кратность ослабления теплового потока т при установке п экранов со степенью черноты ε э и пренебрежимо малыми термическими сопротивлениями

определяется по формуле

где Е 1 и Е 2 - интенсивность теплового облучения на рабочем месте соответственно.

Эффективность установки теплозащитного экрана оценивается долей задержанной теплоты и определяется по формуле

Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

В свою очередь по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К первому классу относят металлические водоохлаждающие и футерованные асбестовые, альфолиевые, алюминиевые экраны. Ко второму - экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Экраны первого и второго классов могут орошаться водяной пленкой. К третьему классу относят экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного, пленочные водяные завесы, свободные и стекающие по стеклу, вододисперсные завесы.





Рис. 7. Конструктивные схемы непрозрачных теплозащитных экранов: а - экран из альфоля, уложенного рядами в воздушных прослойках; б - экран из скомканного альфоля в воздушных прослойках; в - комбинированный экран; 1 - металлический лист; 2 - слой альфоля; 3 -слой из теплоизоляционного металла; 4 - профилированный алюминиевый лист; 5-рамка.

Непрозрачные экраны. В качестве материалов для непрозрачных теплоотражающих экранов используют альфоль (алюминиевую фольгу), алюминий листовой, белую жесть, алюминиевую краску. Экран состоит из несущего каркаса, отражающей поверхности и деталей крепления к экранируемому оборудованию. Межэкранное пространство при установке нескольких простых одинарных экранов принимается обычно (по конструктивным соображениям) равным 20...25 мм. Уменьшение межэкранного пространства до 5 мм улучшает теплозащитные свойства экранов вследствие устранения конвективного теплообмена между слоями экрана.

Теплоотражающие экраны для трубопроводов изготовляются в виде квадратных коробов или полуцилиндрических скорлуп, оклеенных внутри альфолем. При температуре трубопровода выше 90 °С нужен двойной экран. Достоинством теплоотражающих экранов является высокая эффективность, малая масса, экономичность. Однако применение их ограничивается, так как они не выдерживают высоких температур и механических воздействий. Эффективность экранов ухудшается при отложении на них пыли, сажи и при окислении.

В качестве непрозрачных теплопоглощающих экранов используют металлические заслонки и щиты, футерованные огнеупорным или теплоизоляционным кирпичом, асбестовые щиты на металлической раме, сетке или листе и другие конструкции.

Непрозрачные экраны радиационного охлаждения - это сварные или литые (с замкнутым змеевиком) конструкции, охлаждаемые протекающей внутри водой. Их можно футеровать с одной стороны. Временные экраны можно изготовлять в виде металлических щитов, орошаемых водой. Футерованные теплоотводящие экраны могут применяться при любых встречающихся в практике интенсивностях облучения, нефутерованные - при интенсивностях 5... 14 кВт/м 2 , орошаемые щиты- при интенсивностях 0,7...3,5 кВт/м 2 .

Полупрозрачные экраны. Их применяют в тех случаях, когда экран не должен препятствовать наблюдению или вводу через него инструмента, материалов. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3...3,5 мкм, цепные завесы, армированное стальной сеткой стекло. Металлические сетки применяют при интенсивностях облучения до 0,35... 1,05 кВт/м 2 . Эффективность экранов из сетки зависит от количества слоев: один слой - 33...50, два слоя -

Цепные завесы применяют при интенсивностях облучения 0,7...5 кВт/м 2 . Эффективность цепной завесы равна около 70 %. Для повышения эффективности можно применять орошение завесы водяной пленкой и устраивать двойные экраны.

Армированное стальной сеткой стекло применяют для экранирования тех поверхностей кабин и пультов управления, которые должны пропускать видимый свет, но четкого различения объектов через них не требуется. Допустимая интенсивность облучения и эффективность экранов из армированного стекла такая же, как и у цепной завесы. Эффективность экрана может быть повышена орошением водяной пленкой и устройством двойного экрана.

Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водяной пленкой, или паровой завесы. Эти экраны имеют коэффициент эффективности до 75 % и применяют при интенсивностях облучения 0,7... 2,1

кВт/м 2 .Теплопоглощающие прозрачные экраны изготовляют из различ­ных бесцветных или окрашенных стекол (силикатных, кварцевых, органических). Для повышения эффективности применяют двойное остекление с вентилируемой воздушной прослойкой.

Стекла всех теплозащитных экранов обладают спектральной селективностью, и поэтому их эффективность в большой степени зависит от спектрального состава излучения. При длине волны излучения более 5 мкм для защиты может быть использовано обычное оконное стекло толщиной 1 мкм. При длине 2,8...5 мкм требуется бесцветное стекло толщиной 5 мм. При длине волны в диапазоне 0,78...2,8 мкм требуется применять теплозащитное стекло толщиной

Эффективность теплозащиты стекол зависит от температуры источника излучения теплоты. Наибольшую эффективность при температуре до 1100°С имеет органическое стекло толщиной 6...8 мм. Выше этой температуры □ закаленное стекло, окрашенное в массе, со светопропусканием 40%. Если тепловой поток действует на стекло постоянно, то эффективность теплозащиты снижается в среднем на 10 % по сравнению с периодически действующим потоком.

Выбор стекла для смотровых окон постов правления должен производиться с учетом значений интенсивности облучения и температуры источника излучения.

Прозрачные теплоотводящие экраны (водяные и вододисперсные завесы) применяют для экранирования рабочих окон печей и т. п., если через экран необходимо вводить инструмент или заготовки. Водяные завесы рекомендуется применять при интенсивности облучения 0,350... 1,400 кВт/м 2 . Коэффициент эффективности водяных завес в различных участках спектра в значительной степени зависит от толщины слоя и достигает 80 %.

Тонкие водяные пленки (толщиной до 15 мм) хорошо поглощают тепловые лучи с длиной волны более 1,9 мкм, а лучше - с длиной волны более 3,2 мкм. Поэтому они пригодны для экранирования источников с температурой до 800 °С. При толщине слоя воды 15... 20 мм полностью поглощаются тепловые лучи с длиной волны более 1 мкм. При таком слое вода эффективно защищает от теплового

излучения источников с температурой до 1800 °С. Экраны в виде водяной пленки, стекающей по стеклу, более устойчивы сравнению со свободными водяными завесами. Они имеют коэффициент эффективности порядка 90 % и могут применяться при интенсивности облучения до 1,75 кВт/м 2 .

Аквариумные экраны, представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15...20 мм, имеют коэффициент эффективности до 93 % и рекомендуются при интенсивности облучения до 2,0 кВт/мг.

Коэффициент эффективности вододисперсных завес постоянен в диапазоне длин 1... 3 мкм и достигает 0,7. Рекомендуемая область применения завес при интенсивности облучения до 3,5.. .7 кВт/м 2 .

Контрольные вопросы

1. Укажите основные мероприятия по защите от вредного действия теплового излучения.

2. Индивидуальные средства защиты от теплового излучения.

3. По каким признакам классифицируют теплозащитные экраны?

4. Теплозащитные экраны: область применения, преимущества и недостатки.

5. Конструкции непрозрачных теплозащитных экранов.

6. Эффективность теплозащитных экранов. Сформулируйте пути повышения эффективности их защиты.

7. Водяные и вододисперсные завесы: область применения, преимущества и недостатки.

6.ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ

Для снижения и предупреждения травматизма на производстве применяют современные средства обеспечения безопасности (рис16). Несмотря на их непрерывное совершенствование, полностью устранить опасности из производственного процесса и исключить их влияние на работающих не удается, так как нулевой риск возможен лишь в системах, лишенных запасенной энергии, а также химических или биологических активных компонентов.

Средства управления включают в себя все системы, задействованные в управлении рабочими органами машин и оборудования (пускатели, кнопки, рычаги, тормозные системы, рулевое управление и т. д.).

Информативные средства служат для обеспечения операторов всей необходимой для работы информацией. К таким средствам относят соединенные с преобразователями (датчиками) индикаторы, табло, средства сигнализации (звуковой сигнал, стоп-сигнал, указатели поворота и т. п.), зеркала заднего вида, стеклоочистители, омыватели стекол и т. п.


Средства регулирования микроклимата (кондиционеры, отопители, вентиляторы, пылеотделители, аспирационное оборудование и др.) поддерживают требуемые параметры воздушной среды рабочей зоны оператора.

Дополнительные средства используют при техническом обслуживании или ремонте машин и ликвидации отклонений от нормального протекания технологического процесса. К таким средствам относят приспособления для настройки предохранительных муфт, очистки рабочих органов (крючки, чистики), огнетушители, лопаты и т. п.

Ограждения (кожух, капот, решетки, сетки, крышки, перила, барьеры, экраны, жалюзи, козырьки и т. д.) защищают оператора от механических воздействий движущихся и вращающихся частей, высоких или низких температур, повышенных уровней излучений, агрессивного действия химических веществ, биологических вредностей и излишней информации. По способу установки и особенностям эксплуатации ограждения подразделяют на съемные, открываемые и раздвижные; по времени эксплуатации - на постоянные, служащие неотъемлемыми частями машин или оборудования, и временные, устанавливаемые на период выполнения работ небольшой продолжительности на непостоянных рабочих местах.

С помощью блокировок можно предотвратить включение рабочих органов при снятом ограждении, самопроизвольное включение рабочих органов и др. Ограничители энергии служат для предотвращения появления в технических системах излишнего количества энергии, влекущего за собой развитие нестационарных режимов и экстремальных ситуаций. К ограничителям энергии жидкости и газов относят клапаны (предохранительные, взрывные, перепускные), мембраны, шайбы; механической энергии

предохранительные муфты, срезные шпонки, штифты и шпильки, регуляторы частоты вращения, концевые выключатели, ловители; электрической энергии - предохранители, защитно-отключающие устройства, плавкие вставки, заземляющие устройства, устройства защитного зануления и т. п.

Защитные устройства должны удовлетворять следующим требованиям: быть достаточно прочными, простыми в изготовлении и применении; исключать возможность травмирования; надежно фиксироваться в требуемом положении; не мешать при работе, техническом обслуживании или ремонте машин и механизмов.

Конструкция защитного устройства должна быть такой, чтобы при отказе его отдельных элементов действие других не прекращалось раньше завершения действия опасного производственного фактора. Средства защиты не должны снижать производительности труда и качества обработки, ухудшать условия наблюдения при выполнении трудовых операций.

Ограждают все потенциально опасные вращающиеся или движу щиеся части машин, механизмов и оборудования (кроме тех, которые нельзя оградить с учетом их функционального назначения); зоны возможного выброса рабочего материала и инструмента; зоны факторов повышенной опасности (высоких температур, напряжений, излучений).

Защитные ограждения, приспособления и устройства должны исключать:

Возможность соприкосновения работника с движу щимися частями машины;

Выпадение или вылет обрабатываемых деталей (материалов), а также частей рабочих органов при их поломках;

Попадание в работающих частичек обрабатываемого материала;

Возможность травмирования при установке и смене рабочих органов, инструментов.

Внутренние поверхности защитных ограждений и посадочные места для них окрашивают в красный цвет, сигнализирующий об опасности в случае их открывания, а на наружной поверхности наносят предупреждающий знак. Для удержания ограждений при съеме и установке их снабжают рукоятками, скобами и другими устройствами, не допускающими самопроизвольного открывания во время работы. Ограждения должны отвечать эстетическим требованиям, быть компактными, пропорциональными, без выступающих крепежных деталей и острых углов.

Ограждения особо опасных рабочих органов или открывающиеся дверцы, крышки, щитки в этих ограждениях необходимо снабжать электрическими либо механическими блокирующими устройствами, обеспечивающими останов машин или оборудования при съеме или открывании ограждения. Дверцы или съемные крышки должны иметь приспособления, не допускающие их самопроизвольного открывания или смещения во время работы оборудования.

Ограждение ремней должно быть расположено возможно ближе к ним и быть шире их не менее чем на 50 мм.

Оградительные устройства чаще всего изготавливают в виде сплошных жестких щитов и кожухов из листовой стали толщиной не менее 0,8 мм либо листового алюминия толщиной не менее 2 мм, либо из прочной пластмассы толщиной не менее 4 мм. При необходимости осмотра ограждаемых механизмов или деталей оборудования ограждения снабжают смотровыми окнами из безопасного стекла толщиной не менее 4 мм. С этой же целью, а также для снижения массы конструкции ограждения выполняют с отверстиями. Они могут представлять собой решетки или сетки. Решетчатые и сетчатые ограждения необходимо располагать не ближе 50 мм от движущихся частей. Обычно размер ячеек сетки не превышает 10x10 мм.

Блокировки должны отвечать следующим требованиям:

Исключать возможность выполнения операций при незафиксированном рабочем материале или его неправильном положении (установке);

Не допускать самопроизвольных перемещений рабочих устройств, транспортных средств, механизмов подъема, поворота и других подвижных элементов линий, оборудования;

Не допускать выполнения следующего цикла до окончания предыдущего;

Обеспечивать останов линии при снятии или открывании ограждения и входе человека в зону ограждения;

Обеспечивать невозможность пуска линии при снятых или открытых ограждениях, а также при нахождении человека в зоне ограждения;

Исключать возможность одновременного использования дублированных органов или пультов управления;

Обеспечивать останов при выходе исполнительных устройств оборудования за пределы запрограммированного пространства, отказе оборудования или выходе параметров энергоносителей за допустимые пределы.

Ограждения представляют собой физическую преграду между человеком и опасным или вредным производственным фактором. В зависимости от назначения и условий работы ограждения изготавливают из различных материалов. Они могут одновременно выполнять роль паро-, газо- и пылеприемников, исключать воздействие тепловых и электромагнитных излучений на работающих, а в отдельных случаях снижать шум и т. д. Такие ограждения называют комбинированными. Например, ограждение заточного круга кроме защиты человека от отлетающих частиц (в том числе и частей самого круга при его разрушении) выполняет функцию пылеприемника.

Расчет ограждений

Ограждения помимо ограничительных функций должны гаран­тировать безопасность рабочего и обслуживающего персонала в случае отлета из рабочей зоны разрушенных частей инструмента, сорвавшихся заготовок, деталей, элементов крепления.

При расчете сплошных ограждений из металла по действующей ударной нагрузке определяют толщину стенки ограждения.

Для абразивного круга или вращающейся детали в случае их разрыва на две части ударная нагрузка на ограждения, Н,

где m К - масса круга или детали, кг; v вр - окружная скорость вращения, м/с; - радиус центра тяжести половины абразивного круга или детали, м.

Радиус центра тяжести, м,

где R -радиус внешней окружности круга или детали, м;г-радиус центрального отверстия круга или детали, м.

Ударная (центробежная) сила, которой обладает деталь при ос­вобождении зажимного устройства фрезерного станка, а также сила удара разорвавшегося ремня, цепи или части сломанного инструмента, Н,

где m - масса детали или ее части, кг; v - скорость движения детали, части, м/с; r 1 - радиус кривизны траектории отрыва детали, части, м.

Толщину стенки ограждения, изготавливаемого из листовой конструкционной стали, принимают по справочным данным.

Сплошные ограждения, толщина стенок которых подсчитана указанным методом, могут быть заменены отдельными кружками или сеткой после соответствующего перерасчета конструкции ограждения в зависимости от характера нагрузки (растяжение, изгиб, срез).

Методы и средства защиты от опасностей. Защита от источников тепловых излучений

Защита от источников тепловых излучений

Для защиты от теплового излучения применяются средства коллективной (СКЗ) и индивидуальной (СИЗ) защиты. Классификация СКЗ дана на рис. 2.4. Основными методами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование.


Рис. 2.4. Классификация средств коллективной защиты от тепловых излучений


Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,35 кВт/м2, температуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100 °С


Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т. д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопроводностью.


Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной.


Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики.


Оберточная изоляция изготовляется из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. — и наиболее пригодна для трубопроводов и сосудов.


Засыпная изоляция в основном используется при прокладке трубопроводов в каналах и коробах. Для засыпки применяют, например, керамзит.


Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ.


Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие — мастичные и оберточные материалы.


Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.


Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием.


В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску.


Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.


Непрозрачные теплоотводящие экраны изготовляют в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью (рис. 2.5), что обеспечивает температуру на наружной поверхности экрана не более 30...35 °С.


Рис. 2.5. Водоохлаждаемый экран для радиационного охлаждения и защиты от теплового облучения рабочих мест: 1 — подвод воды; 2 — сток воды; 3 — перегородки; 4 — переливное окно; 5 — труба с водой для промывки экрана; 6 — полость с перегородками; 7 — полость без перегородок


Полупрозрачные экраны применяют в тех случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3—3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет, используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.


Прозрачные экраны изготовляют из бесцветных или окрашенных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.


Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов (рис. 2.6). Струя может подаваться сверху, снизу, сбоку и веером.


Рис. 2.6. Устройства воздушного душирования: а — стационарные; б — передвижные


Метеорологические условия на производстве характеризуются температурой воздушной среды, относительной влажностью, скоростью движения воздуха и атмосферным давлением, температурой поверхности (ограждающих конструкций, технологического оборудования), интенсивностью теплового излучения. Особое место занимает тепловое (инфракрасное) излучение, исходящее от нагретых материалов, поверхности оборудования. Все эти параметры оказывают большое влияние на здоровье человека и производительность труда.

Гигиенические требования к величинам температуры, относительной влажности и скорости движения воздуха устанавливаются в зависимости:

  • а) от категории работ , различающихся по уровню энергозатрат:
    • легкие физические работы работы, производимые сидя и сопровождающиеся незначительным физическим напряжением;
    • физические работы средней тяжести – работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения;
    • тяжелые физические работы – работы, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий;
  • б) сезона года. Здесь различают два периода – холодный и теплый. Холодный период года – это период со среднесуточной температурой наружного воздуха, равной +10 °С и ниже. Теплый период года – период со среднесуточной температурой наружного воздуха выше +10 °С.

Отнесение условий труда к тому или иному классу вредности и опасности по показателям микроклимата осуществляется в соответствии с Руководством Р 2.2.2006–05 "Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда". Условия труда оцениваются по разным показателям микроклимата в зависимости от конкретного рабочего места. Гигиеническими нормативами предусмотрено деление микроклимата на нагревающий и охлаждающий.

К нагревающему микроклимату относится такое сочетание параметров микроклимата (температура воздуха, скорость его движения, влажность, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме и (или) увеличении доли потерь тепла испарением пота.

Охлаждающим микроклиматом является такое сочетание параметров микроклимата, при котором имеет место изменение теплообмена, приводящее к образованию общего или локального дефицита тепла в организме.

Класс условий труда при работе в производственных помещениях с охлаждающим микроклиматом (при отсутствии теплового излучения) определяется по нижней границе температуры воздуха. Класс условий труда при работах на открытой территории в холодный период года и в неотапливаемых помещениях определяется по нижней границе температуры воздуха.

На ряде производств высокая температура воздушной среды сочетается с повышенной влажностью (красильные цеха текстильной промышленности, бумажная промышленность и т.д.). На других производствах технология требует пониженных температур (морозильники, бродильные отделения пивоваренных заводов и т.д.). Часто работы проводятся на открытом воздухе в зимнее время (строительные работы, открытая добыча угля и полезных ископаемых и т.д.).

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с температурой более 33 °С) и окружающими предметами – эта стадия отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного; между нагретыми облучением телами и воздухом – в этой стадии преобладает конвекция. При температуре источников тепловыделений более 50 °С в теплообмене преобладает излучение, поэтому для обеспечения нормальных условий труда в горячих цехах снижение теплоизлучений является основной задачей.

Каждый источник теплоты создает в пространстве поле излучения , независимое от взаимного положения источников. Распространяясь в пространстве, поля излучений накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом: в поверхностных слоях облучаемого тела она превращается в тепловую энергию. Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит в первую очередь от температуры источника.

Тепловой обмен человеческого организма с окружающей средой заключается во взаимосвязи между образованием тепла в результате жизнедеятельности организма и отдачей или получением им тепла из внешней среды.

У работающих при повышенных температурах нарушается обмен веществ, начинается обильное потоотделение. С потом выделяется до 50 г NaCl, вода при этом теряется в количестве до 8 литров в смену. В результате нарушается водно-солевой обмен, что ведет к изменениям в белковом обмене: в крови появляется большое количество молочной кислоты, мочевины. Вместе с потом удаляются необходимые витамины, тем самым нарушается витаминный обмен. Нарушается деятельность сердечно-сосудистой и дыхательной систем: пульс учащается до 100 ударов в минуту, повышается максимальное и понижается минимальное кровяное давление, учащается дыхание.

При охлаждении организма кровеносные сосуды кожи сокращаются, скорость протекания крови через кожу и отдача тепла путем конвекции и излучения замедляется. Охлаждение вызывает нарушение углеводного обмена, рефлекторной деятельности, появляются простудные заболевания, понижается производительность труда.

В производственных условиях важное значение приобретают изменения в организме, вызванные повторяющимися изо дня в день в течение длительного периода охлаждением или нагреванием. У работающих постепенно образуется новый функциональный уровень организма, часто наступает физиологическое приспособление к производственным термическим воздействиям. Возникает адаптация организма к этим условиям.

Нормирование метеорологических условий производственных помещений осуществляется по ГОСТ 12.1.005– 88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны". Этот стандарт устанавливает оптимальные и допустимые микроклиматические условия в зависимости от характера производственных помещений, времени года и категории выполняемой работы (легкая, средней тяжести и тяжелая).

Для снижения опасности воздействия тепловых излучений используют такие способы, как уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия.

При невозможности по техническим причинам достигнуть нормируемых температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева: водовоздушное ду- ширование, высокодисперсное распыление воды на облучаемые поверхности и кабины, устройство помещений для отдыха и др. Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты от тепловых излучений: механизация, автоматизация, дистанционное управление и наблюдение, уменьшение тепловых потерь излучением, тепловая изоляция и герметичность источников излучения (печей, трубопроводов с горячими газами и жидкостями), экранирование источников излучения и рабочих мест.

Тепловая изоляция поверхностей источников излучения снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Уменьшая тепловые потери оборудования, тепловая изоляция обусловливает сокращение расхода топлива (электроэнергии). Печи изолируют в большинстве случаев легковесным кирпичом; между наружным стальным кожухом и кирпичной кладкой иногда применяют засыпки из сыпучих или волокнистых материалов; своды изолируют засыпкой из сыпучих материалов (например, песка или колошниковой пыли). Засыпка создает герметичность, что особенно важно для газовых выбросов.

Экранирование – наиболее распространенный и эффективный способ защиты от теплового излучения. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплоотводящие. Подобное деление в известной степени условно, так как каждый экран обладает способностью отражать, поглощать и отводить теплоту. Отнесение экрана к той или иной группе зависит от того, какая из его способностей наиболее выражена. По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на три группы:

непрозрачные . Материалом для теплоотражающих экранов служат листовой алюминий, белая жесть, алюминиевая фольга, укрепляемые на несущем материале (картоне, асбесте, сетке). Достоинства отражающих экранов – высокая эффективность, малая масса, экономичность; недостатки – нестойкость к высоким температурам, механическим воздействиям, ухудшающаяся эффективность при пылеотложениях и окислении.

В теплопоглащающих экранах применяют материалы с большим термическим сопротивлением (щиты асбестовые на металлической сетке или листе, футерованные огнеупорным или теплоизоляционным кирпичом и др.), вследствие чего температура наружной поверхности резко уменьшается. Такие экраны можно использовать при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Подобные экраны практически теплонепроницаемы. Они наиболее эффективны по сравнению с другими видами непрозрачных экранов, но к их устройству предъявляются определенные требования безопасности;

  • полупрозрачные . К теплопоглощающим экранам относятся металлические сетки (размер ячейки 3–3,5 мм), цепные завесы, армированное стальной сеткой стекло. Эти экраны уступают по эффективности непрозрачным экранам;
  • прозрачные . Для теплопоглащающих экранов используют разные стекла (силикатные, органические, кварцевые), бесцветные или окрашенные в массе, тонкие металлические пленки, осажденные на стекле.

Дистанционные пульты управления (или кабины), предназначенные для защиты от теплового излучения, должны удовлетворять следующим требованиям: объем кабины оператора – более 3 м3; стены, пол и потолок оборудованы теплозащитными ограждениями; площадь остекления достаточная для наблюдения за технологическим процессом и минимальная для уменьшения поступления теплоты.

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда – широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудно- воспламеняемых и воздухопроницаемых материалов – сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме обеспечивают питьевой режим.



Поделиться