Эффективное пожаротушение тонкораспылённой водой высокого давления. Тушение пожаров класса A и класса B Система тушения тонкораспыленной водой с применением смачивателя

В статье описаны преимущества тушения пожаров тонкораспылённой водой высокого давления перед тра­диционными способами пожаротушения. Проведена сравнительная оценка эффективности тонкораспылённой воды высокою давления, стоимости оборудовании и монтажа, а также вторичного ущерба при разных способах пожаро­тушения. Приведены данные исследований и огневых испытаний, полученные авторами статьи при моделировании различных очагов возгорания.

Разработки технологий и систем пожаротушения тонкораспылённой водой вы­сокого давления (ТРВ ВД) как стационарных, так и мобильных насчитывают более 25 лет. Соответ­ствующие установки вызывают неизменный ин­терес на выставках, однако масштабы их практи­ческого применения весьма ограничены. Связано это, с точки зрения авторов статьи, с недостаточ­ной детализацией требований, указанных в норма­тивном документе (разделы 5.4, 5.5). В 2004 г. ООО НПО «ПРОСТОР» разработал и начал вы­пускать мобильные установки с использованием ТРВ ВД (рис. 1).

Созданные пожарные стволы и форсунки позволяли организовать заброс высокоскоростной тонкораспылённой воды в зону горения с расстояния 15-20 м. Однако очевидная и прогрессив­ная технология ТРВ ВД до сих пор тиражируется преимущественно в виде мобильных и передвиж­ных агрегатов.

Доктор технических наук, профессор И. М. Абдурагимов в своих первых лекциях фактически сформулировал идею ТРВ ВД, говоря, что в идеале для тушения 1 м² твёрдого вещества требуется 0.5 л воды. Нужно только решить главную зада­чу: как с помощью небольшого объёма воды эф­фективно воздействовать на очаг горения. Первые мобильные установки пожаротушения НПО «ПРО­СТОР», имеющие запас воды 50 или даже 120 л воды (см. рис. 1), являлись своего рода огнетуши­телями для ликвидации или подавления локальных пожаров мощностью до 5 МВт. Но по-прежнему нет поддержки технологии ТРВ ВД в сфере уст­ройства стационарных, автоматических установок пожаротушения (АУП) ТРВ ВД.

В 2016 г. завершена разработка современной отечественной стационарной системы пожароту­шения ТРВ ВД, создан целый комплекс оборудо­вания, включая фирменные форсунки, средства для надежного монтажа трубопроводов, разрабо­таны руководства по проектированию, монтажу и эксплуатации, сертифицированы все компонен­ты системы и созданы необходимые внутренние нормативные документы. Тем не менее остаются те же проблемы внедрения, так как нормативная база для проектирования и внедрения систем по­жаротушения ТРВ ВД по-прежнему отсутствует, поэтому во многих случаях принимается решение в пользу традиционных спринклерных АУП.

За рубежом технологии пожаротушения ТРВ ВД активно развиваются, чему способствуют стандарт и нормы NFРА , а также активное содействие их продвижению со стороны страхо­вых компаний. К сожалению, отечественные стра­ховые компании пока не заинтересованы в стимулировании продвижения технологии ТРВ ВД или содействии принятию необходимых нормативно-­правовых документов. Поэтому приходится возвращаться к вопросам эффективности ТРВ ВД, поиску эффективной системы пожаротушения, которая может сократить вторичный ущерб от пожара практически до нуля.

Традиционные системы пожаротушения низкого рабочего давления (до 1,25 МПа) – НД.

Системы пожаротушения с рабочим давлением выше 3,5 МПа (более 5 МПа) → БД.

Все устройства подачи огнетушащего вещества (оросители, распылители, форсунки) – распылители.

Сравнение систем пожаротушения НД и ВД

Согласно классификации, указанной в законе (ч. 1, ст. 45), существуют АУП агрегатного и мо­дульного типа с распылителями НД и ВД, которые отличаются, помимо рабочего давления, расходом воды. Но данным исследователей из Финляндии, разработанный ими распылитель ВД за 30 мин «выливает» 380 л воды (давление около 10 МПа), а традиционный распылитель НД за то же время 3600 л . Примерно такие же оценки у итальян­ских производителей АУП ТРВ ВД . Обычный спринклер по сравнению с их распылителем «вы­ливает» воды в 8 раз больше. Таким образом, на­прашивается первый вывод : расход воды в системах с НД примерно к 10 раз выше, чем в системах с ВД.

Для систем с НД используются трубы (под­водящие, магистральные и распределительные) гораздо большего диаметра, чем в системах ВД. Также важен и сам материал, из которого изготавливаются трубы. Если в системах НД можно ис­пользовать иногда даже не оцинкованную чёрную трубу (что, конечно, неправильно), то для систем ВД обязательно наличие только нержавеющей и, желательно, отечественной трубы. По приблизи­тельной оценке, учитывая, что примерно 2/3 всего распределительного трубопровода АУП (для систем ВД) составляют распределительные линии мало­го диаметра, погонный метр нержавеющей трубы почти в 2 раза дороже, хотя распределительный трубопровод из нержавеющей стали в 4 раза лег­че. Второй вывод : с учётом труб большого диаметра подводящие, магистральные и распределительные трубопроводы в системах пожаротушения НД по сравнению с линиями ВД более чем в 6 раз тяжелее, но при этом по стоимости примерно в 2 раза дешевле.

Третий вывод : для систем пожаротушения НД необходим значительно больший запас воды и, соответственно, более мощные нагнетательно-распределительные системы. Отличие может быть даже больше чем в 10 раз, так как всё зависит от нормативных требований по продолжительно­сти подачи воды системой .

В работе по материалам зарубежных публикаций были сделаны сравнительные оценки (рис. 2). Если принять за исходное условие усред­нённую спринклерную систему НД, то в ней при­мерно поровну распределены масса оборудования и необходимый запас воды.

Общая масса всей системы пожаротушения ВД с рабочим давлением 10 - 15 МПа составляет только 15 % от массы системы пожаротушения НД. В самой установке пожаротушения ВД соотноше­ние массы воды, необходимой для пожаротушения, к массе оборудования, примерно равно 1:10.

Если сравнивать обе установки по массе оборудования и трубопроводов, то соотноше­ние будет примерно 4:1, а с учётом запаса воды – примерно 7:1 не в пользу систем НД. Четвертый вывод : объёмы и масса монтируемого оборудо­вания и, соответственно, затраты на монтаж си­стем пожаротушения НД в разы превышают за­траты при монтаже систем пожаротушения ВД. При этом более компактные системы пожаро­тушения ВД значительно проще в обслуживании и эксплуатации.


Оценки и сравнения, сделанные на основе рассмотрения конструктивных, архитектурно-планировочных и компоновочных решений ЛУП, не будут полными без сравнения основных элементов этой системы – распылителей, задача которых распределить истекающие потоки воды на мак­симально возможную площадь. В распылителях НД эту функцию выполняют дополнительные конструктивные элементы, устанавливаемые на выходе струи из распылителя (рис. 3).

Распылители ВД, благодаря появлению но­вых технологий и материалов, изобретены сравни­тельно недавно. По конструкции это либо несколько струйных сопел, расположенных под углом (рис. 4, а), либо специальные вихревые форсунки или распы­лители (рис. 4, б).

Сравнительная оценка размеров частиц воды в рас­пылителях НД и ВД

Главное отличие распылителей НД и ВД в размерах частиц воды, которые формируются на выходе из распылителя (см. рис. 3, 4). В распылителях ВД при давлении от 7-12 МПа это, прежде всего, мелкодисперсный поток водя­ных капель размером менее 150 мкм, фактически - от 50 до 100 мкм. Разработчики систем пожаро­тушения НД оперируют средним размером капель 2 мм, сравнивая их с каплями 0,05 мм в систе­мах ВД .

Если теоретически распылить 1 л воды на равномерные частицы размером 2 и 0,05 мм, то получится следующее количество капель: 240 000 и 15 300 000 000. Так как испарение воды проис­ходит с поверхности, то интенсивность испарения при пожаротушении больше зависит не от количества капель, а от их суммарной свободной поверх­ности. Суммарная боковая поверхность для частиц воды НД и ВД равна 3 и 120 м², соответственно, т. е. возрастает в 40 раз. Таким образом, огромное количество капель и увеличенная в десятки раз поверхность испарения в системах пожаротуше­ния ТРВ ВД значительно повышает скорость по­глощения тепла в зоне горения и интенсивность вытеснения из неё кислорода, а также активно экранирует тепловое излучение

Скорость истечения воды из распылителя ВД

Данный параметр для подобного устройства весь­ма важен: чем выше давление в системе, тем выше скорость истечения. При скорости истечения, превышающей 100-150 м/с, следует учитывать до­полнительный мощный аэродинамический фактор дробления водяного потока, чего нет при гравитационном истечении в случае распылителей НД, т. е. в итоге получается быстролетящий туман. Мел­кие частицы воды, обладающие хорошей проницаемостью, способствуют распределению ТРВ по всему пространству, даже «затекая» за препятствия, напоминая по характеру распределения в пространстве газ (квазигаз). Такая способность летящего тумана больше соответствует объёмному способу тушения пожара. В совокупности все перечис­ленные свойства и особенности систем пожаро­тушения ТРВ ВД позволяют говорить о том, что они способны составить серьёзную конкуренцию не только традиционным системам распыления воды НД, но в ряде случаев и газовым системам пожаротушения.

Преимущества от использования водяного тумана при тушении пожара

  • эффективно осуществляет дымоподавление (дымоосаждение);
  • мелкодисперсная вода экранирует тепловое излу­чение и может использоваться для защиты пожарного, а также материальных ценностей на пожаре;
  • распылённая вода более равномерно охлаждает сильно нагретые металлические поверхности несущих конструкций, что исключает их локальную деформацию, потерю устойчиво­сти и разрушение;
  • низкая электрическая проводимость водяного тума­на делает возможным его применение в качестве эффективного средства пожаротушения на электроустановках, находящихся под напряжением.

Особенно эффективным является применение систем пожаротушения ТРВ ВД на ранних стадиях обнаружения пожара, в замкнутых поме­щениях, а также на объектах, не допускающих вто­ричного ущерба от пожара (избыточный пролив воды). В соответствии с рекомендациями международного и европейского стандартов , ис­следованиями зарубежных коллег , а также из накопленного опыта наиболее эффективно ис­пользовать ТРВ ВД для тушения пожаров класса A, В и E в следующих местах:

  • в кабельных сооружениях электростанций (АЭС) и подстанций, промышленных и обще­ственных зданий (тоннели, каналы, подвалы, шахты, этажи, двойные полы, галереи, камеры, используе­мые для прокладки электрокабелей);
  • в городских кабельных коллекторах и тоннелях;
  • в электроустановках, находящихся под на­пряжением до 35000 В;
  • в помещениях для хранения горючих ма­териалов или негорючих материалов в горючей упаковке;
  • в наземных и подземных помещениях и сооружениях метрополитенов и подземных ско­ростных трамваях;
  • в автотранспортных тоннелях;
  • в помещениях складского назначения;
  • в помещениях хранилищ библиотек и архивов.

Авторы статьи признают, что для многих объектов жилого и общественного назначения вполне достаточно использовать традиционные системы пожаротушения НД и проблема их не­достаточной эффективности (не выше 50-60 %) относится, скорее всего, к упущениям в проекти­ровании, монтаже и особенно в обслуживании. Системы пожаротушения ИД ориентированы на лик­видацию пожара в помещении (здании) до возникновения критических значений опасных факторов пожара . При этом следует отметить, что в соот­ветствии со статьей 89 закона расчёт эвакуационных путей и выходов людей производится без учёта применяемых средств пожаротушения, что занижает значимость и эффективность АУП. Следует отметить, что традиционные спринклер­ные ЛУП неэффективны при ликвидации пожара до наступления предела огнестойкости строитель­ных конструкций, до причинения максимально допустимого ущерба защищаемому имуществу и до наступления опасности разрушения технологи­ческих установок . ТРВ ВД лучше использовать в качестве средства объёмного или локально объёмного пожаротушения, что пока не вписыва­ется в способы, указанные в нормативном доку­менте , но такие системы (ТРВ ВД) позволяют обеспечить достижение тех результатов, которые не могут обеспечить спринклерные автоматиче­ские установки пожаротушения .

Системы пожаротушения НД сохраняют ве­дущую роль в системах противопожарной зашиты из-за развитой нормативной правовой базы, отра­ботанных проектных и технологических решений, сформировавшегося положительного отношения страховых компаний.

Системы пожаротушения тонкораспылённой водой высокого давления после создания высоко­эффективных распылителей и форсунок ТРВ ВД на основе новых технологий, инструментария и материалов, экспериментально показывают свои существенно более высокие потенциальные воз­можности и эффективность. Однако низкие темпы формирования нормативной и расчётно-аналити­ческой базы для их применения являются серьёз­ным сдерживающим фактором для перехода на их широкое использование.

ЛИТЕРАТУРА

1. СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автома­тические. Нормы и правила проектирования. - М.: МЧС России, ВНИИПО МЧС России. 2009. - 114 с.

2. Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасно­сти». - М.: Проспект. 2014. - 111 с.

3. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений». - М., 2009. - 20 с.

4. ONR CEN/TS 14972:2011. Ortsfeste Brandbekampfungsanlagen – Feinspruh Loschanlagen // Planung und Einbau; Deutsche Fassung, Belgium, Brussel, Europaisches Komitee fur Normung, 2011, S. 9.

5. NFPA 750. Standart on Water Mist Fire Protection Systems. – Las Vegas, An International Codes and Standarts Organization, National Fire Protection Association, 2015, 88 p.

6. Гергель В. И., Цариченко С. Г., Поляков Д. В. Пожаро­тушение тонкораспылённой водой установками высокого дав­ления оперативного применения // Пожарная безопасность. - 2006. - № 2. - С. 125-132.

7. Противопожарная защита для офисных зданий [Элек­тронный ресурс] // Каталог фирмы MARIOFF CORPORATION. Режим доступа: http://www.marioff.com/fire-protection/fire-protection-for-buildings/fire-protection-for-office-buil...

8. Модуль пожаротушении тонкораспылённой водой ЕI-МISТ [Электронный ресурс] // Официальный сайт компа­нии ООО «Пламя Е1» (Пожарная безопасность и оборудова­ние) [сайт]. Режим доступа: http://www.plamya-ei.ru/produkcija/ei-mist (Дата обращения 24.05.2017 г.).

9. Пахомов В. П. Особенности применения АУПТ тонкораспылённой воды // Пожарное дело в строительстве. - 2009. - № 5. - С. 59-65.

10. НПБ 88-01. Установки пожаротушения и сигнализа­ции. Нормы и правила проектирования. - М.: МВД РФ, Государ­ственная противопожарная служба, 2002. - 119 с.

Несмотря на отсутствие необходимой нормативно-технической базы, систему пожаротушения тонкораспыленной водой можно применять уже сейчас, но совсем не так, как ее позиционируют на рынке недобросовестные продавцы.

За последние пять лет в своей профессиональной деятельности мне неоднократно приходилось сталкиваться с вопросами, связанными с предложениями применения модульных и стационарных установок пожаротушения на основе тонкораспыленной воды. Ее иногда для большего эффекта называют "водяной туман".

Систему эту зачастую преподносят как панацею от всех видов пожаров, и применение ее, по словам поставщиков оборудования для создания ТРВ, практически не ограничено.

Более того, идет агрессивная политика по внедрению этого оборудования. И никакие барьеры - нормативные, моральные, профессиональные, научные - не останавливают людей, готовых ради расширения рынка сбыта, создавать мифы и беззастенчиво, с вдохновением, в псевдонаучных статьях утверждать то, что никоим образом не соответствует действительности.

Вот выдержки из одной такой статьи. Не называю авторов, думаю, что они сами себя узнают. Цитирую:

"Сейчас уже нет надобности агитировать за тонкораспыленную воду (ТРВ). Ее преимущество перед традиционными способами пожаротушения более чем очевидно. При этом все большее значение приобретают системы пожаротушения, которые используют высокое давление (10 МПа и более). При таких давлениях на второй план уходят проблемы, связанные с потерями давления в магистральных линиях; споры о размерах частиц воды, обладающих эффективной пожаротушащей способностью (скоростная высокодисперсная струя воды имеет распределение частиц воды от нескольких микрон до десятков микрон), а само пожаротушение, даже на открытых площадках, из поверхностного переходит в разряд объемных (при скорости истечения воды, например в 200 м/с, образующийся водяной туман способен огибать преграды, проникая в самые недоступные места)... Высокая дисперсность капель и скоростной напор существенно повышают огнетушащую способность таких установок..."

Не вступая в полемику, оставим на совести авторов все вышесказанное и читаем дальше:

"При создании установок пожаротушения с помощью ТРВ на основе высокого давления (ТРВ ВД) пришлось столкнуться с главной проблемой - отсутствием научных и практических знании о процессе истечения высокоскоростных струй воды в атмосферу, о взаимодействии высокоскоростной струи, состоящей из капель мелкой дисперсности, со встречными тепловыми (конвективными) потоками и т.д."

Что скажешь, проблема действительно сложная и решение ее тянет не на одну докторскую диссертацию и не на один патент. Но, как видим ниже, авторам она оказалась по силам:

"Для решения этой задачи пришлось разрабатывать научно-теоретический аппарат, создавать специальные пожарные стволы для ТРВ ВД, отрабатывать принципиально новые струйные, ротационные, тангенциальные и т.п. форсунки, выполнить большой объем экспериментальных исследований".

После такого любое дело и проблема должны быть легко решены, но вдруг такая досадная мелочь По словам авторов, "остается главное препятствие на пути широкомасштабного внедрения новой технологии пожаротушения с использованием ТРВ ВД - это отсутствие соответствующей нормативной базы".

Вроде бы, что стоит специалистам, разработавшим и научно-теоретический аппарат и принципиально новые форсунки, разработать полстраницы машинописного текста, так необходимые для проектирования подобных установок? Однако вот уже более 10 лет нормативной базы как не было, так и нет.

И сейчас самое время разобраться наконец-то, что это такое ТРВ, почему все ее сторонники, производители не могут определить ее нормативные расходы и условия ее применения для тушения пожаров. Для этого обратимся к мнению серьезных ученых и специалистов, далеких от авантюризма и безответственных высказываний.

В.П. Пахомов, главный инженер ЗАО "ПО "Спецавтоматика":

"Применение АУПТ с тонкораспыленной водой существенно сдерживается отсутствием регламентированных требований. Это вызвано тем, что для за -щиты объекта при помощи тонкораспыленной воды недостаточно обеспечить заданную интенсивность орошения, как в случае с ординарной водой, для которой в НПБ-88 определены количественные значения интенсивности орошения, гарантирующие надежную защиту для различных групп помещений. Дело в том, что для реализации всех преимуществ, которые дает ТРВ, капли должны преодолеть конвективные тепловые потоки и достичь поверхности горения".

Не вдаваясь в подробности и математические выкладки (это сделано уже не раз на страницах специализированных журналов), можно утверждать, что для выполнения этой задачи капли тонкораспыленной воды должны обладать гораздо более высокой начальной скоростью.

Именно скорость капель является тем параметром, без которого нельзя однозначно регламентировать процесс обеспечения пожарной безопасности при помощи ТРВ. Однако этой характеристики мы не найдем ни в одном из официальных документов, включая паспортные данные оросителей. Это связано с тем, что процесс тушения тонкораспыленной водой еще недостаточно изучен, и для получения точных зависимостей необходимо провести большое количество экспериментов.

В нынешней ситуации применение оросителей ТРВ, согласно НПБ-88, должно производиться на основе нормативно-технической документации предприятия-изготовителя. Изготовитель, в свою очередь, руководствуется результатами огневых испытаний, в ходе которых экспериментально подтверждается способность оросителя потушить очаг пожара определенного класса. В этом случае корректность заявленных параметров оросителя зависит от опыта производителя, наличия в его распоряжении необходимых методик, оборудования и персонала. Не последнюю роль играет и его "умеренность" в стремлении завысить технические характеристики в надежде получить дополнительную прибыль из-за более широкой области применения оросителей.

При этом необходимо отметить, что условия, при которых капли воды имеют высокую начальную скорость и способны достичь поверхности очага горения, можно охарактеризовать как способ тушения по поверхности.

В ряде публикаций показано, что размер капель, способных попасть на поверхность очага горения, должен быть не менее 150-200 микрон. Такие капли очень быстро падают и не могут накапливаться в воздухе. Для объемного тушения пожара необходимо генерировать капли размером 30 микрон, которые могли бы накапливаться в воздухе и создавать необходимую огнетушащую концентрацию. Однако помимо того, что устойчивая генерация с высокой массовой скоростью капель размером менее 30 микрон является сложной задачей, одновременно с процессом образования капель происходит их слипание и быстрое оседание. До настоящего времени нет надежных результатов по созданию оборудования для получения устойчивой огнетушащей концентрации мелкодисперсных капель воды во всем защищаемом объеме.


Мнение от фирмы NaNo Mist System, США, К.С. Адига РФ Хегер:

"В случае использования техники пожаротушения тонкораспыленной водой образуются капли со средним диаметром более 30 мкм. Капли такого размера бывают слишком большими для того, чтобы их можно было использовать для полного заполнения зоны пожара; такие капли испытывают значительное гравитационное воздействие и плохо проникают в те зоны горения, где наблюдается высокая загруженность объемов".

А.Н. Баратов, главный научный сотрудник ВНИИПО, д.т.н., профессор:

"Тушение распыленными струями имеет ряд преимуществ (в первую очередь сокращается расход воды), и поэтому в последние годы этот способ находит все большее применение.

Вместе с тем среди специалистов существует мнение, что тушение пожаров тонкораспыленной водой менее эффективно, чем объемное тушение ингибирующими горение составами. Причем дискутируется возможность реализации именно объемного способа пожаротушения распыленной водой, заключающегося в равномерном заполнении защищаемого объема устойчивой взвесью примерно монодисперсной каплеобразной средой.

Имеющиеся технические устройства не могут решить эту проблему. Они создают, по существу, локальные потоки распыленной воды, и в этих условиях проникновение капель в пламя связано с необходимостью учета встречного потока продуктов горения. Для этого размер капель должен быть примерно 100 мкм. При этом расход воды оказывается весьма значительным, а значит, данный способ тушения не может конкурировать с объемным газовым пожаротушением.

Воду нельзя использовать для тушения веществ, бурно реагирующих с ней с выделением горючих газов. Также применение ТРВ недостаточно эффективно для тушения материалов, склонных к тлению".

Из всего вышеизложенного, а также исходя из собственного опыта, могу сделать следующие выводы:

Способ пожаротушения на основе тонкораспыленной воды, безусловно, является поверхностным по площади. Этот способ пожаротушения не может конкурировать с объемным газовым пожаротушением. В нормативных документах не может быть регламентирована объемная концентрация ТРВ, так как до настоящего времени нет такого оборудования. Применять данный способ пожаротушения на тех объектах, где согласно нормам должно применяться объемное пожаротушение, нельзя, и все дискуссии об этом и попытки внедрения при сегодняшнем состоянии науки и техники, на мой взгляд, должны быть прекращены.
В федеральных нормативных документах отсутствуют требования к установкам пожаротушения тонкораспыленной водой по интенсивности орошения (л/с м2) и времени подачи огнетушащего вещества, это не позволяет разрабатывать типовые проектные решения для защиты объектов.

Применение запрещено!

Вопрос применения установок ТРВ на промышленных предприятиях в качестве аналога дренчерной системы пожаротушения также вызывает большие сомнения. Связано это с дорогостоящей водоподготовкой, к которой предъявляются совершенно другие, более высокие требования по сравнению с обычными способами водяного пожаротушения, более дорогостоящими материалами для изготовления оборудования для получения ТРВ, высокими требованиями к условиям эксплуатации систем, при соблюдении которых может быть обеспечена их работа.

Как практический работник, многократно наблюдавший закупорку отверстий диаметром в сантиметр, уверен, что если не будут соблюдаться вышеуказанные условия, все отверстия в установках подачи ТРВ будут закупорены, и они станут неработоспособными.

И для чего, собственно, городить все это дорогостоящее специальное оборудование, когда задачу можно эффективно решить при помощи обычной дренчерной системы с добавлением в воду пленкообразующего пенообразователя Инерционность системы мала и давление требуется менее 10 атм.

На объектах ОАО "Газпром" установки пожаротушения на основе тонкораспыленной воды запрещены. В соответствии с Концепцией противопожарной защиты объектов ОАО "Газпром" на объектах транспорта газа принят объемный способ газового пожаротушения с применением двуокиси углерода.

Все объекты, где в технологическом процессе применяются жидкие углеводороды, защищены автоматическими дренчерными установ- " ками пожаротушения с добавлением в воду специального пленкообразующего пенообразователя. На объектах ОАО "Газпром" при выборе АУПТ мы исходим из критериев надежности, простоты в обслуживании, унификации на всех однотипных объектах отрасли, оптимальности цены, предельно малой инерционности, эффективности технологии пожаротушения, предотвращения повторного загорания и без нанесения при этом ущерба технологическому оборудованию.

Возникает вопрос: так что, установки пожаротушения на основе ТРВ никуда негодны и нигде неприменимы?

Применение разрешено!

Смею утверждать - у них уже сегодня есть область применения.

Все дело в непрофессионализме и недобросовестности людей, пытающихся любой ценой внедрить эти установки на промышленные объекты. Этому есть объяснение - большие объемы реализации.

Но вот на что хотелось бы обратить внимание. В ВИПТШ МВД СССР на занятиях по пожарной тактике, разбирая потушенные пожары, строя графики наращивания сил и средств, а также расхода воды на тушение, нас учили, что в идеале для тушения 1 м2 твердого горючего вещества требуется 0,5 л воды. На реальных пожарах на 1 м2 выливается сотни литров, а иногда тонны воды. Не случайно при пожарах в жилых домах зачастую больше ущерба бывает не от огня, а от пролитой воды.

На мой взгляд, применение ранцевых установок ТРВ для тушения квартирных пожаров не только оправдано, но и необходимо. И то, что их нет на вооружении каждой пожарной машины, стоящей в боевом расчете в городских частях, вызывает недоумение.

Применение стационарных установок тонкораспыленной воды оправдано только там, где автоматическое пожаротушение необходимо, но нельзя применить другие виды пожаротушения; в основном это объекты с постоянным пребыванием людей. И диапазон этот достаточно широк: вагоны метро, круизные лайнеры, гостиницы, больницы. Список можно продолжить.

Охлаждающий эффект распыленной воды обеспечит снизить температуру в помещении, позволяя эвакуировать людей и облегчая работу подразделениям пожарной охраны. Получаемый большой объем распыляемой воды будет способствовать уменьшению расхода воды на тушение, и соответственно снизится ущерб, причиняемый от пролива. Применение ТРВ на указанных объектах будет эффективным, спасет много человеческих жизней, имущество. В этом случае применение специально обслуживаемых и дорогостоящих установок подачи ТРВ целесообразно и оправдано. Кроме того, это сохранит нервы и время специалистам, занимающимся противопожарной защитой промышленных объектов на профессиональном уровне, и надеемся, отпадет необходимость отвлекаться от основной работы для того, чтобы отбиться от очередного "революционного", "не имеющего аналогов" способа и от установки пожаротушения тонкораспыленной водой.

P.M.Тагиев,
заместитель генерального директора ООО "Газобезопасность" ОАО "Газпром",
доктор технических наук

Такие знакомые нам по фильмам системы пожаротушения, как разбрызгивание во все стороны воды, были достаточно эффективны в своё время. Но они имели несколько больших недостатков: небольшую площадь покрытия, большой расход ОТВ (огнетушащее вещество), слабое дымоудаление и отсутствие защиты от повторного тления. Как следствие, был разработан новый метод пожаротушения - тонкораспыленной водой.

Принцип пожаротушения тонкораспыленной водой

Главным отличием АУП-ТРВ (Автоматическая Установка Пожаротушения ТонкоРаспыленной Водой) от классических водяных систем пожаротушения является небольшой диаметр капли - 150 мкм и меньше. Это позволяет создать водяной туман, который более эффективен при тушении нескольких очагов пламени, и использовать меньшее количество воды.

Принцип действия установки тушения тонкораспыленной водой состоит в следующем:

  1. Когда срабатывают датчики дыма извещатели пламени или тепловые датчики, прибор АПС (автоматической пожарной сигнализации) подает сигнал на активацию запорно-пускового устройства на газовом баллоне (также есть возможность запуска системы ручным извещателем, который аналогичным образом запускает систему АУП-ТРВ).
  2. Через рукав высокого давления вода под действием газа-вытеснителя поступает из резервуара к трубопроводу, а затем к оросителям, установленным в зоне защиты от пожара.
  3. Смесь воды и газа распыляется под давлением в виде водяного тумана. Под действием высокой температуры водяные капли закипают и образуют пар, который способен проникнуть в труднодоступные места и очаги возгорания. Распыление продолжается до тех пор, пока датчики не дадут сигнал об устранении очага возгорания или пока не закончится вытесняющий газ.
  4. После остановки распыления водяной туман сохраняется в помещении еще около 15 минут, после чего оседает на поверхность.

В нерабочем состоянии модуля давление внутри него отсутствует, что позволяет избежать потери работоспособности оборудования при незначительной разгерметизации.

Тушение пожаров водой до сих пор остается одним и наиболее эффективных, дешевых и востребованных методов борьбы с возгораниями на разного рода объектах. По сравнению с аэрозольными, порошковыми и газовыми комплексами пожаротушения, системы, использующие воду, являются наиболее безопасными, благодаря чему их применяют при тушении 90% всех пожаров. Эффективно используются две системы пожаротушения водой – и . Несмотря на их множество «плюсов», они не лишены недостатков, среди которых можно отметить следующие:

  • большой расход тушащего вещества – воды;
  • всегда существует вероятность нанесения дополнительного ущерба материальным ценностям, попадающим в зону работу установки водяного пожаротушения;
  • существует потребность в дополнительных инженерных помещениях для размещения резервуаров, насосных станций, дренажных установок и прочее;
  • сложное и финансово затратное техническое обслуживание конфигураций тушения пожаров такого типа.

Чтобы исключить перечисленные недостатки и применять в качестве тушащего вещества именно воду была разработана специальная методика тушения пожара – пожаротушение тонкораспыленной водой.

Особенности систем пожаротушения тонкораспыленной водой

Традиционные системы водного пожаротушения формируют водяные капли с размером порядка 0,5…2 мм, то в новых установках диаметр капли не превышает 100 мкм. Если в первом случае только 30…35% воды обеспечивает тушение огня, то во втором практически 99% мелких водяных капель принимают участие в процессе нейтрализации очага возгорания. Благодаря небольшим размерам, тонкораспыленная вода владеет высоким показателем проникающей и охлаждающей способности. Это способствует быстрому и высокоэффективному тушению огня на большой территории.

Кроме того, что установки пожаротушения тонкораспыленной водой эффективно нейтрализуют очаги открытого пламени, они еще способны и поглощать тяжелые частицы дыма, обеспечивая его нейтрализацию.

Конструкция системы

Преимущества и недостатки

К основным преимуществам систем пожаротушения этого вида относятся:

  • высокие показатели эффективности при минимальном расходе воды – не больше 1,5 л на 1 м 2 ;
  • безопасность для персонала, который находится в помещениях, где сработали системы пожаротушения тонкораспыленной водой;
  • эффективное осаждение дыма;
  • полная независимость от внешних источников подачи воды;
  • возможность применения для тушения пожаров в библиотеках, архивах, а также на промышленных объектах, имеющих оборудование, подключенное к электрическим сетям с напряжением не более 35 кВ;
  • простота технического обслуживания и многократного использования модулей тонкораспыленного пожаротушения;
  • компактные размеры основных узлов системы;
  • экологическая чистота.

Несмотря на широкий спектр преимуществ и положительных сторон, пожаротушение тонкораспыленной водой недостатки также имеет и свои недостатки. К основным из них относятся следующие:

  • учитывая, что установка тушения пожаров большую часть времени пребывает в режиме ожидания, рабочие отверстия, через которые распыляется вода, могут зашлаковываться;
  • для работы такого типа пожаротушения нужно использовать дополнительное оборудование – специальные системы водоподготовки;
  • установки не могут применяться для тушения высоковольтного оборудования (более 35 кВ) и веществ, которые поддерживают горение и без доступа воздуха.

ТОП-5 модулей пожаротушения тонкораспыленной водой

  • Пожаротушение тонкораспыленной водой Тайфун – это высокоэффективный способ нейтрализации очагов возгорания за короткие промежутки времени. В качестве огнетушащего вещества используется распыленная вода, в которую добавляются специальные добавки или огнетушащие газы. Благодаря этому существенно повышается противопожарная защита объекта.

  • Комплекс пожаротушения тонкораспыленной водой Minifog EconAqua. Эти модульные установки пожаротушения тонкораспыленной водой – автоматические системы, которые позволяют формировать газожидкостную смесь, подаваемую в область горения и способную эффективно воздействовать на очаги горения на достаточно большой площади.

  • Пожаротушение ТРВ Буран. Это модульные системы тушения пожаров с применением тонкораспыленной воды. Установки отличаются простотой конструкции, минимальными затратами на обслуживание и небольшим потреблением воды для тушения огня. Так же бывают . По эффективности данные модули практически не отличаются.

  • EI-MIST – это модульное водяное пожаротушение, которое для борьбы с очагами пламени использует водяной туман, формируемый вследствие подачи воды через специальные распылители под высоким давлением. Благодаря мелкодисперсной структуре тумана (размер кабель не более 100 мкм) он быстро заполняет весь объем помещения, обеспечивая оседание дыма и тушение огня.

  • ТРВ-Гарант – это еще один вариант модулей тонкораспыленного водяного тушения пожаров разной степени сложности. Устройства могут эффективно использоваться в качестве исполнительных узлов в автономных системах пожаротушения различных объектов.

Как правильно устанавливать системы?

Обратите внимание!

Системы тушения пожара тонкораспыленной водой могут быть 2-х типов – высокого или низкого давления.

В первом случае такие системы владеют баллонами с азотом или насосами высокого давления. Их основное назначение обеспечивать механическое перемешивание и подачу, под большим давлением, газово-водной смеси к распылительным узлам. В таком случае баллоны должны располагаться в максимально возможной близости к распылительным устройствам, чтобы исключить потерю давления. Если используется насос высокого давления, то от него к распылителям прокладываются трубопроводные магистрали, которые можно проложить за подвесным потолком, не портя дизайна помещения.

Модуль пожаротушения тонкораспыленной водой с низким давлением предусматривает раздельное хранение жидкости и газа. В формируемую газово-жидкостную смесь могут добавляться специальные примеси, способствующие быстрому тушению очагов возгорания. Рабочая смесь может подаваться по одному трубопроводу, что упрощает задачу монтажа такого рода систем пожаротушения и последующее их техническое обслуживание.

При расположении баллонов с газом на территории защищаемого объекта нужно учитывать рабочую площадь, на которую рассчитан один баллон и, в соответствии с этим, выбирать их количество.

Не допускается установка резервуаров, наполненных раствором для тушения пожара на большом удалении от оросителей, а баллонов с газом на больших расстояниях от этих емкостей.

Заключение

Правильный расчет и выбор числа баллонов с газом, а также равномерное распределение оросителей позволит эффективно бороться с очагами пламени при внезапном возгорании. Благодаря высокой эффективности водяного тумана, формируемого модулями тонкораспыленного пожаротушения, можно за рекордно быстрое время нейтрализовать пожар любой степени сложности. Это позволит защитить ценные вещи, хранимые в защищаемых помещениях, а также минимизировать вероятность несчастных случаев на объекте во время пожара.

ГОСТ Р 53288-2009

Группа Г88

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Установки водяного и пенного пожаротушения автоматические

МОДУЛЬНЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ ТОНКОРАСПЫЛЕННОЙ ВОДОЙ АВТОМАТИЧЕСКИЕ

Общие технические требования. Методы испытаний

Automatic water and foam extinguishers systems. Automatic fire water mist spray extinguishers systems. Modules. General technical requirements. Test methods


ОКС 13.220.10
ОКП 48 5487

Дата введения 2010-01-01
с правом досрочного применения*
________________
* См. ярлык "Примечания"

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН ФГУ ВНИИПО МЧС России

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 274 "Пожарная безопасность"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 февраля 2009 г. N 63-ст

4 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на модульные установки пожаротушения тонкораспыленной водой (МУПТВ) или иными жидкими огнетушащими веществами (ОТВ), предназначенные для тушения пожаров и применяемые на территории Российской Федерации.

Настоящий стандарт не распространяется на МУПТВ, предназначенные для защиты транспортных средств, а также сооружений, проектируемых по специальным нормам.

Настоящий стандарт устанавливает типы, общие технические требования и методы испытаний МУПТВ.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51043-2002 Установки водяного и пенного пожаротушения автоматические. Оросители. Общие технические требования. Методы испытаний

ГОСТ Р 51105-97 Топлива для двигателей внутреннего сгорания Неэтилированный бензин. Технические условия

ГОСТ 9.014-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.104-79 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы условий эксплуатации

ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 9.302-88 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 9.308-85 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний

ГОСТ 9.311-87 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Метод оценки коррозионных поражений

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.2.037-78 Система стандартов безопасности труда. Техника пожарная. Требования безопасности

ГОСТ 12.2.047-86 Система стандартов безопасности труда. Пожарная техника. Термины и определения

ГОСТ 12.4.026-76 * Система стандартов безопасности труда. Цвета сигнальные и знаки безопасности
______________
ГОСТ Р 12.4.026-2001

ГОСТ 15.201-2000 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство

ГОСТ 356-80 Арматура и детали трубопроводов. Давления условные, пробные и рабочие. Ряды

ГОСТ 2405-88 Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия

ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8486-86 . Пиломатериалы хвойных пород. Технические условия

ГОСТ 8510-86 Уголки стальные горячекатаные неравнополочные. Сортамент

ГОСТ 9569-79 * Бумага парафинированная. Технические условия
______________
* На территории Российской Федерации действует ГОСТ 9569-2006 , здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 19433-88 Грузы опасные. Классификация и маркировка

ГОСТ 21130-75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 23852-79 Покрытия лакокрасочные. Общие требования к выбору по декоративным свойствам

ГОСТ 25828-83 Гептан нормальный эталонный. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 12.2.047 , а также следующие термины с соответствующими определениями:

3.1 водопитатель МУПТВ: Устройство, обеспечивающее работу установки с расчетным расходом и давлением воды и/или водного раствора, указанными в технической документации (ТД), в течение установленного времени.

3.2 запорно-пусковое устройство; ЗПУ: Запорное устройство, устанавливаемое на сосуде (баллоне) и обеспечивающее выпуск из него огнетушащего вещества.

3.3 инерционность МУПТВ: Время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону.

3.4 малоинерционная МУПТВ: Установка с инерционностью не более 3 с.

3.5 модуль: Устройство, в корпусе которого совмещены функции хранения и подачи ОТВ при воздействии пускового импульса на привод модуля.

3.6 модульная установка пожаротушения тонкораспыленной водой; МУПТВ: Установка, состоящая из одного или нескольких модулей, объединенных единой системой обнаружения пожара и приведения их в действие, способных самостоятельно выполнять функцию пожаротушения и размещенных в защищаемом помещении или рядом с ним.

3.7 МУПТВ кратковременного действия: Установка со временем подачи ОТВ от 1 до 60 с.

3.8 МУПТВ непрерывного действия: Установка с непрерывной подачей ОТВ в течение времени действия, определенного в ТД.

3.9 МУПТВ циклического действия: Установка, подающая ОТВ по многократному циклу подача-пауза.

3.10 ороситель: Устройство, предназначенное для тушения, локализации или блокирования пожара путем распыливания воды и/или водных растворов.

3.11 огнетушащая способность: Способность МУПТВ обеспечивать тушение модельных очагов пожара определенных классов и рангов.

3.12 продолжительность действия: Время с момента начала выхода ТРВ из оросителя до момента окончания подачи.

3.13 рабочее давление : Давление вытесняющего газа в сосуде с ОТВ, возникающее при нормальном протекании рабочего процесса.

3.14 расход огнетушащего вещества: Объем воды, подаваемой МУПТВ в единицу времени.

3.15 среднеинерционная МУПТВ: Установка с инерционностью от 3 до 180 с.

3.16 тонкораспыленный поток огнетушащего вещества: Капельный поток огнетушащего вещества со среднеарифметическим диаметром капель не более 150 мкм.

3.17 установка водяного комбинированного пожаротушения: Установка, в которой в качестве огнетушащего вещества используется вода или вода с добавками в комбинации с различными огнетушащими газовыми составами.

3.18 установка поверхностного пожаротушения тонкораспыленной водой: Установка, обеспечивающая тушение горящей поверхности защищаемого помещения (сооружения).

4 Классификация

Общая классификация установок пожаротушения тонкораспыленной водой приведена в таблице 1.


Таблица 1 - Общая классификация установок пожаротушения тонкораспыленной водой

Классификационный признак

Характеристика

Вид огнетушащего вещества

Вода. Вода с добавками. Газоводяная смесь. Жидкие ОТВ

Инерционность срабатывания

Малоинерционные. Среднеинерционные

Продолжительность действия

Кратковременное. Продолжительное

Тип действия

Непрерывное. Циклическое

Вид водопитателя

Сжатый газ. Сжиженный газ. Газогенератор. Насос. Комбинированный


Обозначение МУПТВ должно иметь следующую структуру:

МУПТВ - XXX - X - XX - ТД,
(1) (2) (3) (4) (5)

где 1 - наименование изделия;

2 - объем огнетушащего вещества, заправляемого в МУПТВ, дм;

3 - тип МУПТВ по водопитателю (сжатый газ (сжиженный газ) - Г, газогенератор - ГЗ, комбинированный - К);

4 - вид огнетушащего вещества (вода - В, вода с добавками - ВД, жидкие ОТВ - Ж, газоводяная смесь - ГВ, газожидкостная смесь - ГЖ);

5 - обозначение технической документации, в соответствии с которой изготовлена установка, или фирма-изготовитель.

Пример условного обозначения:

МУПТВ - 250 - Г - ГВ - ТУ... - модульная установка пожаротушения тонкораспыленной водой с объемом ОТВ 250 дм, тип по водопитателю - сжатый газ (сжиженный газ), ОТВ - газоводяная смесь, изготовленная в соответствии с ТУ.

5 Общие технические требования

5.1 МУПТВ должны соответствовать требованиям , ГОСТ 12.2.037 , настоящего стандарта и ТД, утвержденной в установленном порядке.

5.2 МУПТВ закачного типа должны иметь манометр или индикатор давления с рабочим диапазоном, выбранным с учетом соотношения температура - давление. Нулевое значение, номинальное значение (или минимальное и максимальное) и значение рабочего давления, установленные в ТД на МУПТВ, должны быть указаны на шкале индикатора давления отметками с цифрами. Участок шкалы в диапазоне рабочего давления должен быть окрашен в зеленый цвет, участок в диапазоне пониженного давления - в красный цвет, участок в диапазоне повышенного давления - в красный или иной (кроме зеленого) цвет.

Участки шкалы манометра можно выделять также путем нанесения линии, полосы или сектора различного цвета.

Допускаемая основная погрешность манометра во всем диапазоне шкалы должна соответствовать требованию ГОСТ 2405 .

Максимальная допускаемая основная погрешность индикатора давления не должна превышать 4%.

Конструкция МУПТВ должна обеспечивать возможность удаления измерительных устройств для их поверки.

5.3 МУПТВ должна быть оборудована:

- устройством слива, при необходимости, ОТВ из емкостей и трубопроводов;

- устройством контроля уровня или объема ОТВ в емкостях для их хранения;

- штуцером для присоединения манометра или индикатора давления (для МУПТВ закачного типа);

- предохранительным устройством.

5.4 Устройства пуска установки должны быть защищены от случайных срабатываний.

5.5 Запорные устройства (краны) должны быть снабжены указателями (стрелками) направления потока жидкости и/или надписями "ОТКР" и "ЗАКР".

5.6 Оросители, используемые в МУПТВ, должны быть стойкими к коррозионному и тепловому воздействию и выдерживать в течение не менее 10 мин нагрев при температуре 250 °С. Оросители, изготовленные из коррозионно-нестойких материалов, должны иметь защитные и защитно-декоративные покрытия в соответствии с ГОСТ 9.301 , ГОСТ 9.303 .

5.7 МУПТВ должны быть работоспособны в диапазоне температур окружающей среды, установленной изготовителем и указанной в ТД.

5.8 Сосуды, работающие под давлением, должны быть снабжены устройствами, предохраняющими от превышения давления, срабатывающими в диапазоне давлений

где - максимальное допустимое значение рабочего давления, создаваемое при максимальной температуре эксплуатации устройства, устанавливается изготовителем и указывается в технической документации на устройство;

- давление срабатывания предохранительного устройства;

- давление пробное (ГОСТ 356).

Не допускается использовать в качестве предохранительного устройства запорно-пусковую систему.

5.9 Сосуды, работающие под давлением, должны сохранять прочность при пробном испытательном давлении в соответствии с требованиями .

5.10 МУПТВ должны быть герметичными. Для МУПТВ закачного типа потери давления в баллоне модуля (в баллоне с газом-вытеснителем) не должны превышать 5% от начального в течение года.

5.11 Усилие приведения в действие установки при ручном пуске:

- одним пальцем руки - не более 100 Н;

- кистью руки - не более 200 Н.

5.12 Параметры сигналов автоматического пуска должны соответствовать требованиям ТД на соответствующие изделия.

5.13 Инерционность срабатывания МУПТВ при автоматическом пуске не должна превышать величину, указанную в ТД на изделие.

5.14 Ресурс срабатываний МУПТВ должен быть не менее 5.

5.15 Значения расхода воды и газа через ороситель (оросители) не должны отличаться от установленных в ТД.

5.16 Продолжительность действия установки не должна отличаться от установленной в ТД.

5.17 МУПТВ должны обеспечивать тушение модельных очагов пожара классов А и/или В на всей площади, заявляемой в ТД.

5.18 МУПТВ должны быть стойкими к наружному и внутреннему коррозионному воздействию в течение всего срока службы в соответствии с ТД. Металлические детали из коррозионно-нестойких материалов должны иметь защитные и защитно-декоративные покрытия в соответствии с требованиями ГОСТ 9.301 и ГОСТ 9.303 .

Лакокрасочные покрытия должны быть выполнены в соответствии с требованиями ГОСТ 9.032 , ГОСТ 9.104 , ГОСТ 23852 и должны сохранять свои защитные и декоративные свойства в течение всего назначенного срока службы.

Наружная поверхность корпуса МУПТВ должна быть окрашена в красный цвет в соответствии с ГОСТ 12.4.026 . Допускается, по требованию заказчика, окраска в тон интерьера.

5.19 При использовании в качестве ОТВ водных растворов, склонных к расслоению при длительном хранении, в МУПТВ должны быть предусмотрены устройства, обеспечивающие их перемешивание.

5.20 В МУПТВ для вытеснения ОТВ допускается использование газогенерирующих элементов. Конструкция газогенерирующего элемента должна быть герметичной и исключать возможность попадания в ОТВ каких-либо его фрагментов или шлаков.

5.21 Канал выпуска МУПТВ, как правило, оборудуется до входа в самое узкое проходное сечение канала фильтрующими элементами, размер ячейки которых должен быть меньше минимального сечения канала истечения. Общая площадь проходного сечения фильтра должна более чем в пять раз превышать площадь минимального сечения канала истечения.

6 Требования безопасности и охраны окружающей среды

6.1 К работе с установкой должны допускаться лица, прошедшие специальный инструктаж и обучение безопасным методам труда, проверку знаний правил безопасности и инструкций в соответствии с занимаемой должностью применительно к выполняемой работе согласно ГОСТ 12.0.004 .

6.2 Электрооборудование установок должно быть заземлено. Знак и место заземления - по ГОСТ 21130 .

6.3 При проведении огневых испытаний операторы должны иметь средства защиты органов дыхания, глаз, кожного покрова. Необходимо наличие первичных средств пожаротушения (огнетушители, песок, вода и т.д.). Огневые камеры должны быть изготовлены из негорючих материалов и оборудованы вентиляцией.

6.4 Запрещается:

- эксплуатировать МУПТВ с манометром или индикатором давления, имеющими механические дефекты;

- выполнять любые ремонтные работы при наличии давления в корпусе МУПТВ.

6.5 При эксплуатации, техническом обслуживании, испытаниях, ремонте должны обеспечиваться требования охраны окружающей среды, изложенные в ТД на МУПТВ.

6.6 Добавки к воде (поверхностно-активные вещества) должны иметь гигиеническое заключение.

6.7 Около места проведения испытаний или ремонтных работ МУПТВ должны быть установлены предупреждающие знаки, например "Осторожно! Прочие опасности" и поясняющая надпись "Идут испытания" - по ГОСТ 12.4.026 , а также вывешены инструкция и правила безопасности.

7 Маркировка

7.1 Маркировка МУПТВ должна быть выполнена на русском языке и содержать следующие данные:

- наименование или товарный знак предприятия-изготовителя;

- условное обозначение МУПТВ;

- обозначение нормативного или технического документа, которому соответствует МУПТВ (технические условия, стандарт и т.д.);

- классы очагов пожаров (в виде пиктограмм), которые могут быть потушены данным МУПТВ;

- масса незаправленной МУПТВ;

- вид и объем (масса) ОТВ, находящегося в МУПТВ (при поставке с ОТВ);

- рабочее давление в баллонах при температуре (20±2) °С;

- диапазон температур эксплуатации;

- предостерегающие надписи, например: "Предохранять от воздействия осадков, прямых солнечных лучей и нагревательных приборов";

- рекомендации по периодическим проверкам с указанием частоты проверки;

- заводской номер;

- месяц и год изготовления.

7.2 Маркировку следует выполнять любым способом, обеспечивающим четкость и сохранность в течение всего срока службы МУПТВ.

7.3 На баллоне модуля должны быть указаны его паспортные данные в соответствии с ТД на него.

8 Правила приемки

8.1 Для контроля соответствия МУПТВ требованиям настоящего стандарта, "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением", технической документации проводят приемочные, квалификационные, приемо-сдаточные, периодические, типовые испытания и испытания на надежность.

8.2 Приемочные и квалификационные испытания МУПТВ проводят в соответствии с ГОСТ 15.201 по программе, разработанной изготовителем и разработчиком.

8.3 Приемо-сдаточные испытания проводят в целях принятия решения о пригодности МУПТВ к поставке потребителю. Испытания проводятся службой технического контроля (контроля качества) предприятия-изготовителя по программе, разработанной изготовителем и разработчиком.

8.4 Периодические испытания проводят не реже одного раза в три года на образцах, прошедших приемо-сдаточные испытания, в целях контроля стабильности технологического процесса и качества продукции.

8.5 Типовые испытания проводят при внесении изменений в конструкцию или технологию изготовления (материал и т.п.), способных повлиять на основные параметры, обеспечивающие работоспособность МУПТВ. Программу испытаний составляют с учетом этих изменений и согласуют с разработчиком.

8.6 Испытания на надежность проводят не реже одного раза в три года.

8.7 Объем, виды и порядок испытаний представлены в таблице 2.


Таблица 2 - Объем приемо-сдаточных и периодических испытаний

Показатели

Пункт (раздел) настоящего стандарта

Виды испытаний

Приемо-
сдаточные

Перио-
дические

Наличие маркировки, упаковки и комплектации

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2009



Поделиться