Обеспечение безопасности при работе с источниками ионизирующих излучений. Медицинские нормы и противопоказания при работе с ионизирующим излучением Техника безопасности с источниками ионизирующее излучение

Ионизирующее излучение – это любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Представляет собой поток заряженных и (или) неза­ряженных частиц.

Различают:

  • непосредственно ионизирующее излучение;
  • кос­венно ионизирующее излучение.

Непосредственно ионизирующее из­лучение состоит из заряженных частиц, кинетическая энергия которых достаточная для ионизации при столкновении с атомами вещества (α и ß – излучение радионуклидов, протонное излучение ускорителей и пр.).

Косвенно ионизирующее излучение состоит из незаряженных (нейтральных) частиц, взаимодействие которых со средой приводит к возникновению заряженных частиц, способных непосредственно вы­зывать ионизацию (нейтронное излучение, гамма-излучение).

Ядра всех изотопов химических элементов образуют группу нуклидов, большинство которых нестабильные, т.е. они все время превращаются в другие нуклиды. Самопроизвольный распад нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид – радионуклидом. При каждом распаде высвобождается энергия, которая и передается дальше в виде излучения. Образование и рассеивание радионуклидов приводит к радиоактивному заражению воздуха, почвы, воды, что требует постоянного контроля их содержания и принятия мер по нейтрализации.

Источниками ионизирующих излучений являются радиоактивные элементы и их изотопы, ядерные реакторы, ускорители заряженных частиц, рентгеновские установки, высоковольтные источники постоянного тока и др.

Существенную часть облучения население получает от естественных источников радиации, т.е. из космоса и от радиоактивных веществ, находящихся в земной коре. Например, радиоактивный газ радон постоянно выделяется на поверхность и проникает в производственные и жилые помещения.

Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные частицы попадают внутрь организма с пищей, через органы дыхания).

Основной механизм действия на организм человека ионизирующих излучений связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках, что ведет к их разрушению.

Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия, вида излучения и радионуклида, попавшего внутрь организма.

Количество энергии излучения, поглощенное единицей массы об­лучаемого тела (тканями организма), называется поглощенной дозой и измеряется в греях (1 Гр – 1 Дж/кг). Однако этот критерий не учи­тывает того, что при одинаковой поглощенной дозе α-частицы гораздо опаснее ß-частиц и гамма-излучения.

В связи с этим введена величина эквивалентной дозы, которая измеряется в зивертах (1 Зв = 1 Дж/кг) по Международной системе единиц (СИ), принятой в I960 г. Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиационную опасность для организма разных видов ионизирующего излучения.

Для оценки эквивалентной дозы применяется также единица бэр (биологический эквивалент рада): 1 бэр = 0,01 Зв. В зивертах также измеряется эффективная эквивалентная доза – эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению.

В соответствии с требованиями Закона о радиационной безопасности населения введены дозовые пределы:

  • для персонала 20 мЗв (миллизивертов) в год при производственной деятельности с источниками ионизирующих излучений;
  • для населения – 1 мЗв.

Мероприятия по защите от ионизирующих излучений

Защита от ионизирующих излучений осуществляется с помощью следующих мероприятий:

  • сокращение продолжительности работы в зоне излучения;
  • полная автоматизация технологического процесса;
  • дистанционное управление;
  • экранирование источника излучения;
  • увеличение расстояния;
  • использование манипуляторов и роботов;
  • использование средств индивидуальной защиты и предупреж­дение знаком радиационной опасности;
  • постоянный контроль за уровнем ионизирующего излучения и за дозами облучения персонала.

Защита от внутреннего облучения заключается в устранении не­посредственного контакта работающих с радиоактивными веществами и предотвращении попадания их в воздух рабочей зоны.

Для защиты людей от ионизирующих излучений следует строго соблюдать требования «Норм радиационной безопасности (НРБ-09/2009)» и «Основных санитарных правил обеспечения радиационной безопасности (OCПOPБ-99/2010)».

Обеспечение радиационной безопасности требует комплекса защитных мероприятий в зависимости от активности источников, их агрегатного состояния, видом и энергией излучения, количеством вещества, характером технологического процесса.

Для определения методов и средств защиты от ионизирующих излучений рассмотрим уравнение для определения мощности поглощенной дозы для точечного источника. Под точечным изотропным источником понимается источник одного радионуклидного состава с равномерно распределенной активностью, размеры которого значительно меньше расстояния, на котором рассматривается его действие.

Мощность поглощенной дозы (dD/dt) определяется формулой

где Г 5 - керма-постоянная, Гр м (с Бк) - постоянная для каждого радионуклида величина, значение которой можно найти в справочниках по радиационной безопасности; A(t) - активность источника, зависящая от времени, Бк; г - расстояние до источника, м.

Так как в соответствии с законом радиоактивного распада активность источника изменяется по времени в соответствии с формулой

где A(t) - начальная активность, Бк; X - In 2/Г |/2 - постоянная распада радионуклида, с; Т 1/2 - период полураспада (время, в течение которого распадается половина атомов радионуклида), с;

Таким образом, на основании анализа приведенной формулы можно сделать вывод, что для защиты от ионизирующих излучений необходимо применять следующие методы и средства:

  • снижение активности (количества) радиоизотопа;
  • увеличение расстояния от источника излучения;
  • сокращение времени работы с источником;
  • экранирование излучения с помощью экранов и биологических защит;
  • применение средств индивидуальной защиты.

Увеличение расстояния от источника излучения (защита расстоянием) - достаточно простой и надежный способ защиты. Способ обусловлен способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в итоге приводит к снижению дозы облучения персонала.

Сокращение времени работы с источником (защита временем) основано на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала.

Экранирование излучения с помощью экранов (защита экранами) является наиболее эффективным способом защиты от излучения.

Проектируя защитные экраны, определяют толщину, материал экрана в зависимости от вида энергии излучения.

Защитные экраны от альфа-излучения , как правило, не применяются, так как это излучение обладает малой проникающей способностью. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда и т.п.) обеспечивает достаточно полное поглощение альфа-излучения.

При экранировании бета-частиц в материале экрана возникает тормозное рентгеновское или гамма-излучение, что должно учитываться при изготовлении экранов. Для полного поглощения потока бета-излучения толщина 5р защитного экрана может быть приближенно определена по формуле

где /р - длина пробега бета-частиц, г/см 2 . Для Е тгх > 0,8 МэВ 1 р = = 0,541? тах - 0,15; р - плотность материала экрана, г/см 3 ; Е тях - максимальная энергия бета-частиц.

Для защитных экранов применяют алюминий, стекло, плексиглас, свинец, облицованный материалами с малым атомным номером.

Для защиты от гамма-излучения экраны выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобе- тон, чугун, сталь, являющимися одновременно строительными конструкциями.

Толщину защитных экранов от гамма-излучений можно определить по номограмме (рис. 11.3) и по формуле

где 8 у - толщина защитного экрана, см; р - линейный коэффициент ослабления, см -1 ; N - необходимая кратность гамма-излучения на рабочем месте определяется как отношение измеренной мощности дозы на рабочем месте без защитного экрана (Р изм) к мощности дозы, до которой ее необходимо снизить (Р 0), N = Р цш /Р 0 -


Рис. 11.3.

из свинца: 1 - 192 1г; 2 - 137 Cs; 3 - 60 Со; из железа: 4 - 192 1г; 5 - 137 Cs; 6 - 60 Со

Нейтроны очень плохо поглощаются веществом. Поэтому задача защиты от нейтронов состоит в замедлении быстрых нейтронов и последующем поглощении уже замедленных тепловых нейтронов. Лучшими для защиты от нейтронного излучения являются водородосодержащие вещества, т.е. вещества, имеющие в своей химической формуле атомы водорода. Обычно в качестве защитных материалов от быстрых нейтронов используются вода, парафин, графит, бериллий. Тепловые нейтроны хорошо поглощаются бором, кадмием. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь-вода и т.д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроокисей тяжелых металлов, например гидроокиси железа Fe 2 (OH) 3 .

Защитные экраны применяются различных конструкций. Они могут выполняться в виде защитных боксов (рис. 11.4), передвижных и стационарных экранов (рис. 11.5-11.6), сейфов для хранения радиоактивных препаратов.

Рис. 11.5. а - защитный экран 2ЭН из органического стекла;

6 - защитный экран передвижной 4ЭН с двумя захватами

Для дистанционной работы с источниками в защитных боксах и экранах применяют самодержащие захваты. Для транспортирования и хранения используются контейнеры и сейфы, выполненные из стали, свинца, чугуна (рис. 11.7).

Рис. 11Л Настольный бокс:

  • 1 - корпус; 2 - воздушный шлюз;
  • 3 - разъемы электропитания; 4 - фильтр;
  • 5 - вытяжка; 6 - вентилятор; 7 - фланец для крепления труб; 8 - пульт электропитания;
  • 9 - светильник; 10 - патрубки; 11 - штатив для аппаратуры; 72- смотровое стекло;
  • 13 - дверка с фильтром; 14 - резиновые перчатки

Всякие работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально оборудованных, отдельных помещениях с системой вентиляции. Работа на установках с радиоактивными изотопами должна выполняться лицами старше 18 лет, прошедшими специальное обучение, в том числе безопасным методам работы на данной установке. Все работники должны находиться под постоянным медицинским наблюдением, им регламентируется продолжительность рабочего дня, выдается спецодежда и приборы индивидуального дозиметрического контроля.

Рис. 11.В. Передвижной экран для защиты от радиоактивных излучений: 1 - смотровое окно: 2 - манипуляторы: 3 - механизм передвижения

Рис. 11.7. Оборудование для транспортировки и хранения: 7 - дверца с замком; 2 - кожух; 3 - указатель; 4 - маховик;

5 - барабан

Защита от рентгеновского излучения. Применяемые в радиолокационной аппаратуре и в аппаратуре диспетчерского контроля электроннолучевые трубки, магнетроны, клистроны и др., работающие при напряжениях выше 6 кВ, являются источниками мягкого рентгеновского излучения. Поэтому при технической эксплуатации радиоаппаратуры, питающиеся напряжением выше 15 кВ, необходимо использовать защитные средства с целью предотвращения рентгеновского облучения операторов и инженерно-технических работников.

В качестве защитных средств от действия мягких рентгеновских лучей применяются экраны из стального листа (0,5... 1 мм) или алюминия (3 мм), а также из специальной резины. Смотровые окна в рентгеновских установках выполняются из плексигласа (30 мм) или освинцованного стекла (8 мм).

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организма с вдыхаемым воздухом применяют респираторы, противогазы. В качестве основной спецодежды применяют халаты, комбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки.

При опасности значительного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брюки, фартук, бахилы на ноги и т.п.), покрывающую все тело или места возможного наибольшего загрязнения. В качестве материалов для пленочной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины. При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной подачей чистого воздуха под костюм (рис. 11.8).

Рис. 11.8.

Пневмокостюм

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец.

Биологические воздействия излучения на организм человека

Биологическое действие ионизирующих излучений состоит в разрушении внутримолекулярных связей и как следствие прекращении жизнедеятельности клеток организма. Наиболее подвержены разрушению клетки в фазе деления, когда спирали молекул ДНК обособлены и незащищены. С одной стороны это используется в медицине для прекращения деления клеток злокачественных опухолей, с другой это приводит к нарушению наследственных признаков организма, переносимых половыми клетками. Значительное воздействие рентгеновского излучения приводит к необратимым поражениям тканей - ожогам, потере зрения и в худшем случае к поражению кроветворного механизма(лучевой болезни или лейкемии).

Группы облучаемых органов

1-ая группа - все тело, гонады и красный костный мозг;

2-ая группа – внутренние органы, мышцы, щитовидная железа, жировая ткань, хрусталики глаз;

3-ия группа - кожный покров, костная ткань, кости предплечья, голени и стопы.

Предельная допустимая доза (ПДД)

Для женщин до 40 лет, отнесенных к группе А, введено дополнительное ограничение: доза на тазовую область не должна превышать1 бэр за любые2 месяца.

Индивидуальная доза облучение для лиц категории группы А

Индивидуальная эквивалентная доза за календарный год не должна превышать ПДД.

Для женщин до40 лет доза на тазовую область не должна превышать 1 бэр за любые 2 месяца.

Планируемое повышенное облучение во время аварии может быть разрешено только для спасения людей, предотвращения развития аварии, угрожающей облучением большого числа людей.

Планируемое облучение до 2 ПДД разрешается территориальными службами; до5 ПДД - только министерством здравоохранения.

Планируемое повышение облучения не разрешается:

если работник ранее получил дозу, превышающую5 ПДД;

для женщин в возрасте до40 лет.

Все превышения контрольных доз облучения компенсируются в течение последующих5-ти лет - для дозы 2 ПДД и 10-ти лет - для дозы 5 ПДД.

Доза, накопленная к возрасту 30 лет, не должна превышать12 ПДД.

Персонал, подвергнутый облучению свыше 5 ПДД, немедленно направляется на медицинское обследование.

К персоналу приравниваются все лица, привлекаемые к устранению аварии.

Индивидуальная доза облучение лиц категории группы Б

Среднее значение индивидуальной эквивалентной дозы для критической группы за календарный год не должно превышать 1 ПДД по месту их работы и проживания.

Если по результатам длительного наблюдения установлено, что облучение критической группы лиц категории Б не превышает 0.1 ПДД, то радиационный контроль по согласованию с органами Госсаннадзора может быть сокращен.

Порядок регламентации и контроля облучения населения определяется Основными Санитарными Правилами72/87.

Критическая группа

Критическая группа – это небольшая по численности группа лиц категории Б, однородная по условиям жизни, возрасту, полу, которая подвергается наибольшему радиационному воздействию в пределах учреждения, его санитарно-защитной зоны и зоны наблюдения.

Противопоказания при работ е с источниками ионизирующего излучения

2. Наркомания, токсикомания, хронический алкоголизм.

3. Заболевания, склонные к злокачественному перерождению;

доброкачественные опухоли, препятствующие ношению спецодежды.

4. Лучевая болезнь П -IV степени.

5. Заболевание щитовидной железы, болезнь Рейно, заболевания периферических сосудов.

6. Хронические гнойные заболевания придаточных пазух носа, хронические средние отиты с частыми обострениями.

7. Понижение остроты зрения - ниже 0,6 на одном глазу и ниже 0,5 на другом.

8. Катаракта.

9. Хронические инфекционные и грибковые заболевания кожи.

10. Шизофрения и другие эндогенные психозы.

11. Врожденные аномалии органов с выраженной недостаточностью их функций.

12. Органические заболевания нервной системы со стойко выраженными нарушениями функций.

13. Эпилепсия.

14. Болезни эндокринной системы с выраженным нарушением

15. Злокачественные новообразования.

16. Выраженные болезни крови и кроветворных органов.

17. Гипертоническая болезнь2 -3 стадий.

18. Болезни сердца с недостаточностью кровоснабжения.

19. Хронические болезни легких с выраженной легочно-сердечной

недостаточностью, наклонность к кровотечениям.

20. Бронхиальная астма тяжелого течения.

21. Активные формы туберкулеза любой локализации.

22. Язвенная болезнь желудка и двенадцатиперстной кишки с частыми обострениями или наклонностью к осложнениям.

23. Циррозы печени и активные хронические гепатиты. Поражения желчевыводящей системы с частыми или тяжелыми приступами.

24. Хронические гастроэнтериты и колиты с частыми обострениями.

25. Хронические болезни почек с явлениями почечной недостаточности, мочекаменная болезнь с частыми приступами или осложнениями.

26. Коллагенозы.

27. Болезни суставов с частыми выраженными обострениями или со стойким нарушением функции суставов.

28. Стойкое нарушение менструальной функции.

29. Беременность в период лактации.

30. Хронические воспаления матки и придатков с частыми обострениями.

31. Не вынашивание и повреждение плода у женщин детородного возраста.

32. Заболевание зрительного нерва и сетчатки.

33. Анофтальм.

Отдельные виды работ с ионизирующими излучениями имеют различия как в отношении гигиенической оценки условий , так и в проведении профилактических мероприятий. Так, условия труда и средства защиты персонала при работе с у-источниками во многом отличаются от условий труда при работе с радиоактивными веществами, излучающими а- или b-лучи.

Известное своеобразие условий труда имеется и при работе с искусственными радиоактивными изотопами, и с такими естественными радиоактивными элементами, как радий, торий, радиоторий, мезоторий. Для гигиенической оценки условий труда при работе с радиоактивными веществами и излучателями различной активности необходимо учитывать как характер выполняемой работы, так и характер источника ионизирующей радиации, состояние аппаратуры и применяемые средства защиты персонала.
Исходя из основных факторов вредности и возможного воздействия их на человека, работы с ионизирующими излучениями можно разделить условно на две категории.

а) В первую категорию входят работы, связанные только с внешним облучением (у- и рентгеновыми лучами, нейтронами), что происходит при манипуляциях с запаянными, так называемыми закрытыми, источниками излучений (радий или полоний бериллиевые трубки) или. с рентгеновыми аппаратами и у-установками.

б) Вторую категорию составляют работы, связанные с применением радиоактивных веществ, находящихся в незапаянном виде, или, как говорят, в «открытом» виде, когда возможен их контакт с окружающей средой. В зависимости от характера и условий использования этих веществ они могут находиться в жидком, газообразном, твердом или порошкообразном состоянии. При известных неблагоприятных условиях возможно поступление их в воздух помещений в виде газа, пара, аэрозолей.

Помимо этого, они могут попадать на тело, одежду работающих, загрязнять оборудование, строительные конструкции. Работа с радиоактивными веществами в открытом виде может сопровождаться комбинированным действием, а именно возможно внутреннее облучение при поступлении радиоактивных веществ в организм через органы дыхания, желудочно-кишечный тракт и частично через кожу, а также внешнее облучение тела, если изотопы излучают В- или у-лучи, например при работе с растворами натрия (Na24) и др.

В таких случаях наибольшую опасность представляет облучение тканей радиоактивными веществами, попадающими в организм, так как при этом происходит непрерывное облучение как в процессе работы, так и после ее окончания. Чем больше период полураспада и чем длительнее задержка радиоактивных веществ в организме, тем больше ионизация в местах отложения, а следовательно, тем выше повреждающее действие.

В этом случае наибольшую опасность представляют радиоактивные элементы, испускающие а- и b-частицы, в то время как при внешнем облучении наибольшую опасность представляют у-лучи, нейтроны и рентгеновы лучи.

Радиоактивные вещества в открытом виде применяются в промышленности при нанесении светящихся красок постоянного действия на циферблаты, они широко используются в виде радиоактивных изотопов в лабораториях, на заводах, в медицинских учреждениях, в сельском хозяйстве и т. д. Выполнение работ с радиоактивными веществами в открытом виде в отдельных случаях сопровождается выделением в воздух помещений токсических паров и газов, например паров ртути, различных растворителей, окислов азота, фтористых соединений, озона и др.

При работе на энергетических установках - различного рода реакторах, атомных электростанциях, на установках по ускорению элементарных частиц возможно внешнее облучение за счет у-лучей и нейтронов различных энергий, а также поступление радиоактивных веществ внутрь организма.

- Вернуться в содержание раздела " " на нашем сайте

Нормирование воздействия ионизирующих излучений

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-99/2009, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСПОРБ-99/2010. В соответствии с этими нормативными документами нормы облучения установлены для следующих категорий лиц:

Персонал (группы А и Б) – лица, постоянно работающие с источниками ионизирующих излучений (группа А) или находящиеся по условиям своей работы в сфере их воздействия (группа Б);

Всё население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

В НРБ 99/2009приведены основные пределы доз по эффективной и эквивалентной дозе для персонала группы А и населения. Основные пределы доз для персонала группы Б равны 25% от пределов доз для персонала группы А.

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для населения за период жизни (70 лет) – 70мЗв.

Для студентов и учащихся старше 16 лет, проходящих профессиональное обучение с использованием источников излучения, годовые дозы не должны превышать значений, установленных для персонала группы Б.

Планируемое облучение персонала группы А выше установленных пределов доз при ликвидации или предотвращении аварии может быть разрешено только в случае необходимости спасения людей или предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин старше 30 лет лишь при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв в год.

Облучение эффективной дозой свыше 200 мЗв в течение года должно рассматриваться как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование.

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, уменьшение мощности источников до минимальной величины, применяются различные средства коллективной и индивидуальной защиты.


Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдаётся индивидуальный дозиметр для контроля полученной дозы гамма-излучений.

В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти.

Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьём горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов . Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты , поглощающие или ослабляющие излучение.

Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения и свойств защитного материала.

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария – BaSO 4). Эти материалы надёжно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров.

Для защиты от бета-излучения экраны изготавливают из материалов с небольшим атомным весом (алюминий, пластмасса, органическое стекло). При использовании для защиты от бета-излучения материалов с большим атомным весом возникает вторичное излучение.

От гамма- и рентгеновского излучения эффективно защищают материалы с большим атомным номером и высокой плотностью (свинец, сталь, вольфрамовые сплавы). Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла.

От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.

Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др.

К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда – халаты, комбинезоны, полукомбинезоны и шапочки, изготовленные из хлопчатобумажной ткани. При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают плёночную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.

В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Для поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150–200 л/мин.

Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета-излучений глаза защищают щитками из органического стекла.

Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.



Поделиться